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Abstract

Researchers have long converged that the evolution of a
Social Networking Service (SNS) platform is driven by the
interplay between users’ preferences (reflected in user-item
consumption behavior) and the social network structure (re-
flected in user-user interaction behavior), with both kinds of
users’ behaviors change from time to time. However, tradi-
tional approaches either modeled these two kinds of behav-
iors in an isolated way or relied on a static assumption of a
SNS. Thus, it is still unclear how do the roles of users’ his-
torical preferences and the dynamic social network structure
affect the evolution of SNSs. Furthermore, can jointly model-
ing users’ temporal behaviors in SNSs benefit both behavior
prediction tasks? In this paper, we leverage the underlying so-
cial theories (i.e., social influence and the homophily effect)
to investigate the interplay and evolution of SNSs. We pro-
pose a probabilistic approach to fuse these social theories for
jointly modeling users’ temporal behaviors in SNSs. Thus our
proposed model has both the explanatory ability and predic-
tive power. Experimental results on two real-world datasets
demonstrate the effectiveness of our proposed model.

1 Introduction

Online SNSs, such as Facebook, Twitter, and location-based
social networks, facilitate the building of social relations
among people who share similar interests. Thus, people can
stay connected with others and be informed of new con-
sumption preferences of social friends.

Generally, a SNS platform is built upon two kinds of
users’ behaviors: consuming items (reflected in user-item in-
teraction such as rating, buying and check-in) and building
social links (reflected in user-user interaction such as the
directed trust and the undirected friendship). One step fur-
ther, discovering users’ consumption preferences and sug-
gesting new links are two core behavior prediction tasks for
these systems: Collaborative Filtering (CF), which discov-
ers the like-minded users with similar consumption history,
forms the basis of user preference discovery (Adomavicius
and Tuzhilin 2005; Koren, Bell, and Volinsky 2009); Node
Proximity (NP) based models, which exploit the topologi-
cal structure of social networks, play a central role in the
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social link suggestions (Liben-Nowell and Kleinberg 2007;
Menon and Elkan 2011). In summary, these two directions
utilized a particular kind of users’ historical behavior to pre-
dict the same kind of behavior, and are usually well re-
searched in parallel.

However, social scientists have long converged that these
two kinds of users’ behaviors are not isolated, instead, the
interplay between them drives the evolution of SNSs. Two
social theories explain this interplay: the social influence ar-
gues users’ future preference behavior is affected by the so-
cial network around them, and the homophily effect states
people tend to associate and bond with others that have sim-
ilar preferences (Aral, Muchnik, and Sundararajan 2009).
An example of such evolving of a SNS platform is shown
in Figure 1. Thus, some research works have leveraged one
type of users’ behavior to help another behavior prediction
task (Jamali and Ester 2010; Tang et al. 2013) or assumed a
time-invariant user latent factor is shared among users’ be-
haviors (Yang et al. 2011). Nevertheless, these works either
modeled users’ two kinds of behaviors in an isolated way or
relied on a static assumption of a SNS. Thus, we still can
not give an explanatory answer to the question – how do the
roles users’ two kinds of behaviors play in the evolution of
SNSs? Furthermore, can jointly modeling users’ temporal
behaviors benefit both prediction tasks?

To answer these two questions, there are some techni-
cal challenges. First, both kinds of users’ behaviors mix to-
gether to form the evolution of SNSs. Thus, it is hard to dis-
tinguish the contribution of each kind of users’ behavior in
the evolution process. Second, it is still unclear how to build
connections among users’ two kinds of behaviors over time
and jointly model them. To tackle these challenges, in this
paper, we propose an Evolving Joint Prediction (EJP) approach
to fuse the underlying social theories for explaining and
jointly modeling users’ two kinds of behaviors over time.
Specifically, we associate users and items with latent repre-
sentations, where the user latent factors are time-dependent
and shared among these two kinds of behaviors. In the mean-
time, we clearly quantify the influence of current consump-
tion preference and the social structure for the future users’
behaviors with underlying social theories. Finally, we vali-
date the effectiveness of our proposed model on both behav-
ior prediction tasks by performing experiments on two real-
world datasets. To the best of our knowledge, this is one of
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Figure 1: A showcase of the evolution of a SNS platform. At each time, users perform two kinds of behaviors: build a Social
link or show her Consumption preference. We use “A2B” at each newly added behavior to denote the current behavior of “A”
leads to the future behavior “B”. E.g., a “S2C” label is added from t to t+1 as u1 shows Consumption preference to v2 possibly
because her social neighbors (u1 has followed u4 and u5 before t+ 1 ) consumed item v2 before.

the few attempts that have both the explanatory ability and
the predictive power for tracking the evolution of SNSs.

2 Related Work

We first summarize the traditional solutions for user prefer-
ence discovery and social link prediction, then we introduce
the efforts on modeling users’ behaviors in SNSs.

Collaborative Filtering. Collaborative filtering (CF) is
a technique to discover user consumption preference for
personalized item suggestions (Adomavicius and Tuzhilin
2005). Among all CF techniques, latent factor based models
have shown great success (Mnih and Salakhutdinov 2007;
Koren, Bell, and Volinsky 2009; Zeng et al. 2015). With
users’ preferences change from time to time, some recent
works took the temporal dynamics of users’ interests into
consideration (Liu et al. 2013; Rendle, Freudenthaler, and
Schmidt-Thieme 2010; Xiong et al. 2010; Koren 2010). For
instance, Xiong et al. introduced an additional latent dimen-
sion over time (Xiong et al. 2010) to model the overall trends
of items for users’ preference decision.

Link Prediction. Link prediction is the task of predicting
the possible links in the near future given a snapshot of a
social network. The literature can be classified into two cat-
egories: unsupervised (Liben-Nowell and Kleinberg 2007;
Jeh and Widom 2002) and supervised (Menon and Elkan
2011). With the availability of evolving social network data,
recent studies considered the temporal link prediction prob-
lem (Aggarwal and Subbian 2014). An intuitive yet effec-
tive approach is to collapse multiple time-sliced linked data
into a single matrix with weighted averaging, then the static
link prediction models could be applied (Acar, Dunlavy,
and Kolda 2009; Gao, Denoyer, and Gallinari 2011). Others
proposed tensor factorization or non-parametric time-series
models to capture the temporal information in graph evolu-
tion (Dunlavy, Kolda, and Acar 2011; Sarkar, Chakrabarti,
and Jordan 2012).

Modeling users’ two kinds of behaviors in SNSs. The
principles of the social influence and the homophily effect
suggest that users’ consumption preferences and the social
linking behaviors are not isolated. Thus, the social-based
recommendation system utilizes the social influence theory
to help improve the performance of traditional CF (Jiang et
al. 2014; Jamali and Ester 2010). Others proposed to exploit

users’ preference history, i.e., the homophily effect for link
prediction (Tang et al. 2013). A recent work analyzed and
modeled the temporal behaviors in a SNS using bidirectional
effects (Jamali, Haffari, and Ester 2011). It differs from our
problem formulation in that it focused on the global evolu-
tion of a SNS, thus can not be used for personalized recom-
mendation. Yang et al. proposed to jointly model users’ two
kinds of behaviors in a unified framework, thus achieved bet-
ter performance than modeling them separately. Our work
advances their model in: (1) Their model assumed a static
representation of SNSs while our work captures the tempo-
ral dynamics of the SNS evolution. (2) Our model has the
explanatory power that explicitly quantifies the social net-
work effect and users’ historical preference for the evolution
of SNSs.

3 The Proposed Model

In an online SNS platform, there are a set of users U (|U |=
N ) and items V (|V |=M ). Users perform two kinds of be-
haviors over time: consuming items and building social links
with others, which can be summarized into two tensors: a
consumption tensor C ∈ R

N×M×T and a social link tensor
S ∈ R

N×N×T . If user a consumes item i at time window
t, Ct

ai denotes the rating preference score. Otherwise it is 0
indicating the user does not show any preference during that
time. Similarly, St

ab = 1 if user a connects a link to user b
at time t, otherwise it equals 0. Without confusion, we use
a, b, c to represent users and i, j, k to denote items. Then the
problem can be defined as:

Definition 1 (PROBLEM DEFINITION) Given the user
consumption tensor C and the social tensor S, our goal
is two-fold: (1) quantify the relative contribution of social
influence and homophily effect of each user for the evolution
of SNSs. (2) predict each user’s consumption behavior and
the social link behavior at time T + 1.

In this section, we propose a probabilistic latent approach
to fuse the above two social theories. Specifically, for each
user a at each time t, we associate her with a time-dependent
latent consumption preference factor U t

a . To model the so-
cial influence effect, U t

a is influenced by her social neigh-
bors’ interests at previous time. To capture the homophily
effect, each user’s decision on whether to build a social link
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to another user is also influenced by the similarity between
their latent interest factors. Thus the user latent factors are
time-dependent and shared among these two kinds of users’
behaviors. In the following, we first give an overview of our
proposed framework, followed by the model learning.

Probabilistic Modeling

Evolutional Consumption Behavior Modeling For each
user a and each item i, the predicted consumption prefer-
ence between them at time t could be expressed as:

p(C|U, V ) =
T∏

t=1

N∏
a=1

M∏
i=1

N [(Ct
ai|〈U t

a, Vi〉, σ2
C)]

Y t
ai , (1)

where N (μ, σ2) is a normal distribution with mean μ and
variance σ2. Y is an indicator tensor in which it equals 1 if
user a rates item i at time t. U t

a ∈R
D×1 is the latent prefer-

ence of user a at time t in user latent tensor U ∈ R
T×N×D

and Vi ∈ R
D×1 is the item latent factor in item latent ma-

trix V ∈ R
M×D. 〈, 〉 denotes the inner product of two vec-

tors. Given the limited observed preference data, a typical
approach is to add priors to the latent variables. As other tra-
ditional CF models (Mnih and Salakhutdinov 2007), we add
a zero-mean Gaussian prior on the item latent matrix:

p(V |σ2
V ) =

M∏
i=1

N (Vi|0, σ2
V I), (2)

Now our goal turns to how to model the evolution of
users’ latent interest tensor U . In fact, as shown in Figure 1,
a user’s current interest is mainly influenced by two under-
lying reasons: First, a user follows her previous preferences
to make current consumption decisions. This effect uses the
historical consumption behavior for future consumption pre-
diction and is the base of traditional CF models. For exam-
ple, a possible reason for u2 to consume v4 at time t in Fig-
ure 1 is that u3— a user that has similar consumption pref-
erence with her consumed v4 in the past. Second, in a social
network, the social influence theory argues that people are
affected by their social neighbors to make future decisions.
E.g., u1 is influenced by her social friend u4, thus consumes
v2 at time t+1. We explicitly model the two effects of each
user’s latent interests at time window t = 2, 3, ...T as:

p(U t
a) = N (U t

a|Ū t
a, σ

2
UI)

where Ū t
a=(1− αa)U

(t−1)
a + αa

∑
b∈N

(t−1)
a

F t
abU

(t−1)
b

s.t. ∀a ∈ U, 0 ≤ αa ≤ 1, (3)

where F t
ab denotes the weight of b influences a at time t. N t

a
is the set the users that a has social links with till time t,
i.e., N t

a=[b|St′
ab = 1, t′ ≤ t]. Here, we simply set this weight

F t
ab=

1

|N(t−1)
a |

as an average of all users that a connects. αa is
a non-negative parameter that balances these two influencing
factors. As users may have their own decisions in balancing
these two aspects, e.g., some people like to follow their own

preferences and others are easily influenced by social neigh-
bors’ decisions, αa is personalized and varies among people.
The larger the αa, the larger the social influence effect plays
in this user’s future consumption decision, the less likely this
user follows her own previous preferences.

At the initial time t= 1, the social network has not been
set up yet, thus each user’s latent interests are only deter-
mined by her own consumption preferences without any so-
cial influence. We assume a zero-mean Gaussian distribution
of users’ latent factors at that time. Then we summarize the
prior over user latent tensor as:

p(U |σ2
U , σ

2
U1) =

U∏
a=1

N (U1
a |0, σ2

U1I)

T∏
t=2

N (U t
a|U t

a, σ
2
U I), (4)

Evolutional Social Behavior Modeling Similar as the
user consumption behavior, each user a’s link behavior is
also mainly influenced by two factors. First, user a connects
to another user that is close to her based on the topolog-
ical graph structure, which can be modeled by traditional
link prediction measures. E.g., u1 bonds with u5 at time t
in Figure1 can be mainly attributed to this reason. Second,
user a finds another user that shows similar consumption
preferences, then she is likely to associate with her in the
near future to share consumption experience. This is termed
as the homophily effect in social science and it is widely
accepted in explaining the social network construction pro-
cess (McPherson, Smith-Lovin, and Cook 2001). An illus-
tration of this homophily effect is that u2 connects to u5 in
Figure1.

As we represent users’ consumption preferences with la-
tent factors, the homophily effect between users could be
measured by comparing their latent consumption prefer-
ences. Then the predicted link score Ŝt

ab between user a and
b at time t = 2, 3, ...T could be modeled as:

Ŝt
ab=(1− βa)h(a, b, t)+βa〈U (t−1)

a , U
(t−1)
b 〉, s.t.0 ≤ βa ≤ 1,

where βa is a coefficient that captures a user’s unique char-
acteristic in balancing these two factors. In this equation,
h(a, b, t) measures the node proximity between them in a
social network and the second part measures the homophily
effect. As the social network is dynamic and changes from
time to time, it is reasonable to assume the node proxim-
ity between users also varies. Since the focus of our paper
is not to devise more sophisticated models to measure node
proximity between users, here, we simply adopt a classical
Adamic/Adar metric (Liben-Nowell and Kleinberg 2007),
and adapt it to a time varying version as:

h(a, b, t) =
1∑

c∈N
(t−1)
a ∩N

(t−1)
b

log(|N (t−1)
c |)

, (5)

Though simple, this metric directly measures the weighted
triangles between two potentially linked users and usually
has very good link prediction performance (Liben-Nowell
and Kleinberg 2007).
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At t= 1, no historical user latent preference is available,
it is reasonable to assume that the social structure is the only
factor that determines the social relationships:

Ŝ1
ab = h(a, b, 1) =

1∑
c∈N1

a∩N1
b
log(|N1

c |) . (6)

Given the predicted link score in Eq.(5), the likelihood of
the predicted link value can also be modeled as:

p(S|U, σS) =

T∏
t=2

N∏
a=1

N∏
b=1

N [(St
ab|Ŝt

ab, σ
2
S)] (7)

Figure 2: Graphical representation of the proposed model.

Model Learning and Prediction

We summarize the graphical representation of the proposed
latent model in Figure 2, where the shaded and unshaded
variables indicate the observed and latent variables. Given
users’ behavior tensors C and S, our goal is to learn the pa-
rameters Φ = [U, V, α, β], where α = [αa]

N
a=1 and β = [βa]

N
a=1.

Particularly, the posterior distribution over Φ is:

p(U, V, α, β|C, S) ∝ p(C|U, V, α)× p(S|U, β)× p(U)× p(V ).
(8)

Maximizing the log posterior of the above equation is
equivalent to minimizing the following objective:

min
Φ

E(Φ) = 1

2

T∑
t=1

N∑
a=1

M∑
i=1

Y t
ai[Ĉ

t
ai − Ct

ai]
2

+
1

2

T∑
t=1

N∑
a=1

M∑
i=1

λS

2

T∑
t=2

N∑
a=1

N∑
b=1

[Ŝt
ab − St

ab]
2
+

λV

2

M∑
i=1

||Vi||2F

+
λU

2

T∑
t=2

N∑
a=1

||U t
a − U t

a||2F +
λU1

2

N∑
a=1

||U1
a ||2F

s.t. ∀a ∈ U, 0 ≤ αa ≤ 1, 0 ≤ βa ≤ 1. (9)

where λS =
σ2
C

σ2
S

, λU =
σ2
C

σ2
U

, λU1 =
σ2
C

σ2
U1

and λV =
σ2
C

σ2
V

. Among
them, λS is a tradeoff coefficient between the consumption
prediction loss and the social link prediction loss, and λU

is a coefficient that measures how users’ latent preference
over time. λU1, and λV are regularization parameters for user
latent matrix at time 1 and the item latent matrix.

The coupling between U ,V and the balance parameters
makes the objective function of Eq.(9) not convex, however,
it is convex with regard to each parameter. Specifically, the
derivative of each parameter is:

∇Ut
a
=

M∑
i=1

Y t
ai(Ĉ

t
ai − Ct

ai)Vj + I[t = 1]λU1U
1
a

+ I[t ≥ 2]λU (U
t
a − U t

a) + λU (1− αa)(U
(t+1)
a − U (t+1)

a )

+ λU

∑
a∈Nt

c

αcF
t
ca(U

(t+1)
c − U (t+1)

c )

+ I[t < T ]λSβa

N∑
b=1

(Ŝ
(t+1)
ab − S

(t+1)
ab )U t

b

+ I[t < T ]λS

N∑
c=1

(Ŝ(t+1)
ca − S(t+1)

ca )(βcU
t
c), (10)

∇Vi =
∑T

t=1
Y t
ai(Ĉ

t
ai − Ct

ai)U
t
a + λV Vi, (11)

∇αa = λU

T∑
t=2

N∑
i=1

〈U t
a − U t

a,
∑

b∈N
(t−1)
a

F t
abU

(t−1)
b − U (t−1)

a 〉,

(12)

∇βa = λS

T∑
t=2

M∑
b=1

(Ŝt
ab − St

ab)〈U (t−1)
a , U

(t−1)
b 〉 − h(a, b, t),

(13)

where I[x] is an indicator function that equals 1 if x is true
and 0 otherwise.

Since the objective function is convex with regard to each
parameter, a local minimum can be achieved by updating
each parameter iteratively. As there are no constraints on
U and V , we can update them directly using Stochastic
Gradient Descent (SGD) method (Bottou 2010). With the
bound constraints of αa and βa, a local minimum can be
found by the Projected Gradient(PG) method (Lin 2007).
Specifically, for each αa (0 ≤ αa ≤ 1), the PG method
update the current solution αk

a in k-th iteration to αk+1
a by

the following rule:

αk+1
a = P [αk

a − η∇αa ], P (αa) =

⎧⎪⎨
⎪⎩
αa if 0 ≤ αa ≤ 1,

0 if αa < 0,

1 if αa > 1

(14)

After learning the related parameters, the two goals in the
problem definition process can be answered: (1) the relative
contribution of the social influence and the homophily effect
can be directly obtained from parameters α and β. (2)The
predicted behaviors of each user at T + 1 are:
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U (T+1)
a ≈ (1− αa) ∗ UT

a + αa

∑
b∈NT

a

F t
abU

T
b ,

Ŝ
(T+1)
ab ≈ (1− βa)h(a, b, T + 1) + βa〈U (T+1)

a , U
(T+1)
b 〉,

Ĉ
(T+1)
ai ≈ 〈U (T+1)

a , Vi〉.
(15)

We summarize the algorithm for our proposed model in
Algorithm 1.

Algorithm 1: Parameter Learning of the Proposed
Model

Initialize U , V , α and β ;
while not converged do

for a = 1, 2, ...N do
for t = 1, 2, ..., T do

Fix V, α, β, update U t
a using SGD;

Fix U, V , update αa and βa using PG ;
for i = 1, 2, ...,M do

Fix U,α, β, update Vi using SGD;

Return U , V , α and β ;

Dealing with Data Imbalance. Note that in social link
construction process, St

ab = 0 denotes a missing link be-
tween user a and b. If we consider all missing link records
in the optimization function of Eq.(9), the problem turns to a
highly imbalanced learning problem with much more labels
of 0 than 1. Here, we borrow an effective undersampling
technique. Particularly, for each newly added positive link,
we randomly select m missing links as observed pseudo
negative links with a weight of 1

m at each iteration of the
learning process. Since the sampling process is random and
each time the negative samples change, each missing link
gives very weak negative signal (Jamali, Haffari, and Ester
2011; Menon and Elkan 2011).

Time Complexity. The main time complexity of the pro-
posed algorithm lies in computing the latent representations
of each user and the balance parameters. Suppose there are
c non-empty consumption records in consumption tensor C
and s social links in social tensor S (c  M × N, s 
N × N ), then the average consumption records and so-
cial connections of each user at each time are tc = c

N×T

and ts = s
N×T

. In each iteration, the time complexity is
O(N × T × D × (tc + ts + s

N
) = O(D × (c + T × s)) for

U , O(D × c) for V , and O(c+ s) for the balance parameters.
Thus the total complexity of parameter learning in each iter-
ation is O(D× (c+ T × s)), which is linear with the records
and time windows.

4 Experiments

Data Description and Experimental Setup. The datasets
we used are: the who-trust-whom online product shar-
ing dataset Epinions (Richardson, Agrawal, and Domin-
gos 2003) and the location based social networking dataset
Gowalla (Scellato, Noulas, and Mascolo 2011). In both
datasets, we treated each month as a time window. We fil-
tered out users that have less than 2 consumption records

and 2 social links. After that, each user’s preference rating is
normalized into 0 to 1. Table 1 shows the basic statistics of
the two datasets after pruning. In data splitting process, we
use the data till time T for model training, i.e., T=11 (T=3)
in Epinion (Gowalla). Among them, we randomly extract
10% of the records as the validation dataset, which are used
for parameter tuning. The newly added behaviors in T+1 are
treated as the test data.

Table 1: The statistics of the two datasets.
Dataset Epinions Gowalla
Users 4,630 21,755
Items 26,991 71,139
Time 12 4
Training Consumptions 62,872 278,154
Training Links 75,099 251,296
Test Consumptions 2,811 52,448
Test Links 3,257 6,254
Consumption Density 0.050% 0.018%
Link Density 0.35% 0.053%

In the following, we report the resuts of our proposed
model Evolving Joint Prediction (EJP). The step size of EJP is
empirically set to be 0.01. For each iteration, EJP costs about
50 seconds on Epinions and 200 seconds on Gowalla and it
converges in less than 100 iterations on both datasets, so the
training time is less than 6 hours. As we have already an-
alyzed the time complexity of EJP (linear with the records
and time windows), we focus on the effectiveness analysis
due to page limit. We also devise two simplified models of
EJP: Evolving Consumption Prediction (ECP) and Evolving Link
Prediction (ELP). Specifically, ECP leverages the dynamic
social network for consumption prediction (i.e.,λS = 0 in
Eq.(9)) and ELP utilizes users’ temporal consumption pref-
erences for link prediction (i.e., we do not optimize the first
term in Eq.(9)). There are several parameters in our model,
we set the regularization parameters as λU1 =λV = 0.1. λU

is set to be 5 in Epinions and 1 in Gowalla, and λS is set to
be 0.5 in Epinions and 5 in Gowalla.

User Consumption Preference Prediction. We com-
pare the consumption prediction results with: PMF (Mnih
and Salakhutdinov 2007), TMF (Xiong et al. 2010), So-
cialMF (Jamali and Ester 2010), and a joint learning model
FIP (Yang et al. 2011). For better illustration, we summa-
rize the details of these models in Table 2. We adopt the
widely used Root Mean Squared Error (RMSE) measure
for consumption prediction precision comparison (Mnih and
Salakhutdinov 2007; Xiong et al. 2010). For fair compari-
son, all parameters in these baselines are tuned to have the
best performance.

Figure 3 shows the consumption prediction results of var-
ious models with different latent dimension sizes D on both
datasets. As can be seen from this figure, among all mod-
els, our proposed latent model EJP performs the best, fol-
lowed by the related model ECP. Also, the SocialMF and
TMF have better performance than PMF, indicating the ef-
fectiveness of incorporating the time and social network in-
formation. Last but not least, the performance improvement
is significant for nearly all latent based models from D = 5
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Table 2: Characteristics of the Baselines.
Model Consumption Social Link Time Consumption Social Evolution Explanation
PMF

√ × × √ × ×
SocialMF

√ √ × √ × ×
TMF

√ × √ √ × ×
AA × √ × × √ ×

CMF × √ √ × √ ×
hTrust

√ √ × × √ ×
FIP

√ √ × √ √ ×
ECP

√ √ √ √ × √
ELP

√ √ √ × √ √
EJP

√ √ √ √ √ √

5 10 15 200.270

0.275

0.280

0.285
Epinions

 K

R
M

SE

5 10 15 200.31

0.32

0.33

K

Gowalla

 

 

PMF SocialMF TMF FIP ECP EJP

Figure 3: Consumption performance comparison. All re-
sults between baselines and EJP pass t-test at a confidence
level of 0.01.

to 10, and changes slowly after the latent dimension further
increases. Given this observation, we set D = 10 in the fol-
lowing experiments.

Social Link Prediction. We report link prediction
results with: AA (Liben-Nowell and Kleinberg 2007),
CMF (Dunlavy, Kolda, and Acar 2011), hTrust (Tang et al.
2013) and a joint model FIP (Yang et al. 2011). In link pre-
diction task, our goal is usually to rank the potential linked
users. As the user size is huge, it is impractical to take
all users as candidates. Thus we adopt a similar approach
that has been accepted by many works (Yang et al. 2011;
Koren 2008): for each test user a, we randomly sample 100
negative linked users that are not connected to her till the test
time window. Then we mix those positively linked users and
the sampled users together to select the top potential linked
users of each test user. This process is repeated 10 times and
we report the average results. Particularly, we adopt three
widely used top-n ranking metrics: precision, recall, and
F1 measure, where n denotes the size of the link prediction
list (Tang et al. 2013; Yang et al. 2011). We set n = 5 as it
is useless to recommend too many friends, also, most online
social networks adopt a similar number of potential friends
for recommendation.

Figure 4 shows the link prediction performance. We set
n = 5 as it is useless to recommend too many friends.
Among all models, EJP has significant better predictive
power than all baselines and ELP ranks the second, followed
by hTrust. This finding suggests it is effective to leverage
the homophily effect reflected in users’ consumption behav-

ior for link prediction. The joint model improves over tradi-
tional baselines, nevertheless, it does not perform as well as
our proposed model. We guess a possible reason is that FIP
uses a shared same user latent factor to represent both users’
consumption preferences and link structure, which may not
well capture all the information of users’ two kinds of be-
haviors. Note that besides n = 5, we have also measured
the link prediction performance with other values of n (from
n = 1 to n = 20) and we found the overall trend is the
same. Therefore, due to page limit, we do not report the de-
tailed results at other settings of n.

Visualization of the Balance Parameters. An impor-
tant characteristic of our proposed model is that it has the
explanatory power to distinguish each user a’s uniqueness
in balancing two vital social theories, i.e., the social influ-
ence (αa) and the homophily effect (βa). To visualize each
user a’s preference in balancing these two effects, we rep-
resent each user as a 2-dimensional data point (αa, βa) and
randomly illustrate some users in Figure 5. As can be seen
from this figure, different uses do have their own unique-
ness in balancing these two social theories for decision mak-
ing. For example, the upper right corner indicates users that
are likely to be influenced by social neighbors and the ho-
mophily effect for decision making, while the bottom-left
corner shows users that are not likely to be swayed by social
neighbors and the homophily effect for future behaviors.

Parameter Setting. There are four parameters in our
model: λU1, λV , λS and λU . These parameters are impor-
tant but not difficult to tune. Among them, λU1 and λV

are the regularization parameters of users’ latent factors at
time 1 and the item latent factor. Since these two parameters
have a similar form as the traditional PMF model (Mnih and
Salakhutdinov 2007), we tune them on PMF and set them
under the setting of the best performance on PMF. Thus we
do not report the detailed setting of these two parameters.
In the following, we report the setting of the remaining two
parameters. Particularly, we choose the RMSE measure and
F1 measure to evaluate the performance of these two tasks.

The setting of λS is shown in Figure 6. For each λS , we
initialize EJP with the results from ECP (λS = 0 in ECP),
and stop model learning when either prediction task perfor-
mance begins to decrease. In this figure, as λS increases
from 0.1 to larger values, the overall trend is that the con-
sumption performance decreases while the link performance
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Figure 4: Link prediction comparison. All performance between the baselines and EJP pass the t-test at a confidence level of
0.01.
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Figure 5: Visualization of the balance parameters for typical
users.
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Figure 6: The impact of λS .

increases as we put more weight on the social network in-
formation. Please note that both behavior prediction per-
formance increases as we set λS from 0 to a 0.1. We ex-
plained it before as there are mutual relationship between
users’ behaviors, thus jointly modeling them would have
better results. Given the results, setting λS in a reasonable
range would balance these two prediction tasks, e.g., λS in
[0.1, 0.7] in Epinions and [1, 10] in Gowalla. A possible rea-
son why λS has a much larger value in Gowalla than Epin-
ions is that, we have much less new connected link records
in Gowalla than Epinions, thus we should put more weights
on the link prediction results of Gowalla data.

λU characterizes users’ latent preference change over
time, Figure 7 gives the performance with varying param-
eters of λU . We observe that the values of λU impacts both
prediction results. As λU increases, the performance of both
prediction results increase at first, but when λS surpasses 5
in Epinions and 1 in Gowalla, the performance of the predic-
tion results of both tasks decrease. Given this observation,
we set λU = 5 in Epinions and λU = 1 in Gowalla data.
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Figure 7: The impact of λU .

5 Conclusions and Future Work

We provided a focused study on understanding users’ tem-
poral behaviors in SNS platforms. Particularly, by leverag-
ing the social influence theory (homophily effect) for con-
sumption prediction (link connection), we explicitly distin-
guished each kind of users’ behavior for the evolution of
SNSs. We established a joint latent model to address both
prediction tasks in a unified framework. Experimental re-
sults validated that the users’ preferences and the social net-
work information are mutually helpful. In the future, we
would like to follow this direction and explore how to build
a more effective SNS platform based on our findings.
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