
Making the Relation Matters: Relation of Relation Learning Network for
Sentence Semantic Matching

Kun Zhang1, Le Wu1,2, Guangyi Lv3, Meng Wang1,2*, Enhong Chen3, Shulan Ruan3

1School of Computer Science and Information Engineering, Hefei University of Technology
2 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

3Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China
{zhang1028kun, lewu.ustc, eric.mengwang}@gmail.com, {gylv,slruan}@mail.ustc.edu.cn, cheneh@ustc.edu.cn

Abstract

Sentence semantic matching is one of the fundamental tasks
in natural language processing, which requires an agent to
determine the semantic relation among input sentences. Re-
cently, deep neural networks have achieved impressive per-
formance in this area, especially BERT. Despite their effec-
tiveness, most of these models treat output labels as mean-
ingless one-hot vectors, underestimating the semantic infor-
mation and guidance of relations that these labels reveal, es-
pecially for tasks with a small number of labels. To address
this problem, we propose a Relation of Relation Learning
Network (R2-Net) for sentence semantic matching. Specifi-
cally, we first employ BERT to encode the input sentences
from a global perspective. Then a CNN-based encoder is de-
signed to capture keywords and phrase information from a
local perspective. To fully leverage labels for better relation
information extraction, we introduce a self-supervised rela-
tion of relation classification task for guiding R2-Net to con-
sider more about relations. Meanwhile, a triplet loss is em-
ployed to distinguish the intra-class and inter-class relations
in a finer granularity. Empirical experiments on two sentence
semantic matching tasks demonstrate the superiority of our
proposed model.

Introduction
Sentence semantic matching is a fundamental Natural Lan-
guage Processing (NLP) task that tries to infer the most suit-
able label for a given sentence pair. For example, Natural
Language Inference (NLI) targets at classifying the input
sentence pair into one of the three relations (i.e., Entailment,
Contradiction, Neutral) (Kim et al. 2018). Paraphrase Iden-
tification (PI) aims at identifying whether the input sentence
pair expresses the same meaning (Dolan and Brockett 2005).
Figure 1 gives some examples with different semantic rela-
tions from different datasets.

As a fundamental technology, sentence semantic match-
ing has been applied successfully into many NLP fields, e.g.,
information retrieval (Clark et al. 2016), question answer-
ing (Liu et al. 2018), and dialog system (Serban et al. 2016).
Currently, most work leverages the advancement of repre-
sentation learning techniques (Devlin et al. 2018; Vaswani

*Corresponding author
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Some examples from SNLI and SciTail datasets.

et al. 2017) to tackle this task. They focus on input sen-
tences and design different architectures to explore sen-
tence semantics comprehensively and precisely. Among all
these methods, BERT (Devlin et al. 2018) plays an impor-
tant role. It adopts multi-layer transformers to make full use
of large corpus (i.e., BooksCorpus and English Wikipedia)
for the powerful pre-trained model. Meanwhile, two self-
supervised learning tasks (i.e., Masked LM and Next Sen-
tence Prediction) are designed to better analyze sentence se-
mantics and capture as much information as possible. Based
on BERT, plenty of work has made a big step in sentence
semantic modeling (Liu et al. 2019; Radford et al. 2018).

In fact, since relations are the predicting targets of sen-
tence semantic matching task, most methods do not pay
enough attention to the relation learning. They just leverage
annotated labels to represent relations, which are formulated
as one-hot vectors. However, these independent and mean-
ingless one-hot vectors cannot reveal the rich semantic infor-
mation and guidance of relations (Zhang et al. 2018), which
will cause an information loss. Gururangan et al. (2018) has
observed that different relations among sentence pairs imply
specific semantic expressions. Taking Figure 1 as an exam-
ple, most sentence pairs with “contradiction” relation con-
tain negation words (e.g., nobody, never). “entailment” re-
lation often leads to exact numbers being replaced with ap-
proximates (person, some). “Neutral” relation will import
some correct but irrelevant information (e.g., absorb car-
bon dioxide). Moreover, the expressions between sentence
pairs with different relations are very different. Therefore,
the comparison and contrastive learning among different re-
lations (e.g., pairwise relation learning) can help models to
learn more about the semantic information implied in the re-
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lations, which in turn helps to strengthen the sentence anal-
ysis ability of models. They should be treated as more than
just meaningless one-hot vectors.

One of the solutions for better relation utilization is
the embedding method inspired by Word2Vec. Some re-
searchers try to jointly encode the input sentences and labels
in the same embedding space for better relation utilization
during sentence semantic modeling (Du et al. 2019; Wang
et al. 2018a). Despite the progress they have achieved, la-
bel embedding method requires more data and parameters to
achieve better utilization of relation information. It still can-
not fully explore the potential of relations due to the small
number of relation categories or the lack of explicit label
embedding initialization (Wang et al. 2018a).

To this end, in this paper, we propose a novel Relation of
Relation Learning Network (R2-Net) approach to make full
use of relation information in a simple but effective way. In
concrete details, we first utilize pre-trained BERT to model
semantic meanings of the input words and sentences from a
global perspective. Then, we develop a CNN-based encoder
to obtain partial information (keywords and phrase informa-
tion) of sentences from a local perspective. Next, inspired by
self-supervised learning methods in BERT training process-
ing, we propose a Relation of Relation (R2) classification
task to enhance the learning ability of R2-Net for the im-
plicit common features corresponding to different relations.
Moreover, a triplet loss is used to constrain the model, so
that the intra-class and inter-class relations are analyzed bet-
ter. Along this line, input sentence pairs with the same rela-
tions will be represented much closer and vice versa further
apart. Relation information is properly integrated into sen-
tence pair modeling processing, which is in favor of tack-
ling the above challenges and improving the model per-
formance. Extensive evaluations of two sentence semantic
matching tasks (i.e., NLI and PI) demonstrate the effective-
ness of our proposed R2-Net and its advantages over state-
of-the-art sentence semantic matching baselines.

Related Work
In this section, we mainly introduce the related work from
two aspects: 1) Sentence Semantic Matching, and 2) Label
Embedding for Text Classification.

Sentence Semantic Matching
With the development of various neural network tech-
nologies such as CNN (Kim 2014), GRU (Chung et al.
2014), and the growing importance of the attention mech-
anism (Vaswani et al. 2017; Parikh et al. 2016), plenty of
methods have been exploited for sentence semantic match-
ing on large datasets like SNLI (Bowman et al. 2015), Sc-
iTail (Khot et al. 2018), and Quora (Iyer et al. 2019). Tra-
ditionally, researchers try to fully use neural network tech-
nologies to model semantic meanings of sentences in an end-
to-end fashion. Among them, CNNs focus on the local con-
text extraction with different kernels, and RNNs are mainly
utilized to capture the sequential information and semantic
dependency. For example, Mou et al. (2016a) employed a
tree-based CNN to capture the local context information in

sentences. Kun et al. (2018) combined CNN and GRU into
a hybrid architecture, which utilizes the advantages of both
networks. They used CNN to generate phrase-level semantic
meanings and GRU to model the word sequence and depen-
dency between sentences.

Recently, attention-based methods have shown very
promising results on many NLP tasks, such as machine
translation (Bahdanau et al. 2014), reading comprehen-
sion (Zheng et al. 2019), and NLI (Bowman et al. 2016).
Attention helps to extract the most important parts in sen-
tences, capture semantic relations, and align the elements of
two sentences properly (Cho, Courville, and Bengio 2015;
Zhang et al. 2017). It has become an essential compo-
nent for improving model performance and sentence under-
standing. Early attempts focus on designing different atten-
tion methods that are suitable for specific tasks, like inner-
attention (Liu et al. 2016), co-attention (Kim et al. 2018),
and multi-head attention (Shen et al. 2017). To fully explore
the potential of attention mechanism, Zhang et al. (2019)
proposed a dynamic attention mechanism, which imitates
human reading behaviors to select the most important word
at each reading step. This method has achieved impressive
performance. Another direction is pre-trained methods. De-
vlin et al. (2018) used very large corpus and multi-layer
transformers to obtain a powerful per-trained BERT. This
method leverages multi-head self-attention to encode sen-
tences and achieves remarkable performances on various
NLP tasks. With the powerful representation ability, pre-
trained BERT model has accelerated the NLP research.

However, most of these methods only focus on the input
sentences and treat the labels as meaningless one-hot vec-
tors, which ignores the potential of label information (Zhang
et al. 2018). There still remains plenty of space for further
improvement on sentence semantic matching.

Label Embedding for Text Classification
As an extremely important part of training data, labels con-
tain much implicit information that needs to be explored.
In computer vision, researchers have proposed label embed-
ding methods to make full use of label information.

However, research on explicit label utilization in NLP is
still a relatively new domain. One possible reason is that
there are not that many labels in NLP tasks. Thus, label
information utilization is only considered on the task with
relatively a large number of labels or multi-task learning.
For example, Zhang et al. (2018) proposed a multi-task label
embedding method for better implicit correlations and com-
mon feature extraction among related tasks. Du et al. (2019)
designed an explicit interaction model to analyze the fine-
grained interaction between word representations and label
embedding. They have achieved impressive performance on
text classification tasks. In addition, Wang et al. (2018a) and
Pappas and Henderson (2019) transferred the text classifi-
cation task to a label-word joint embedding problem. They
leveraged the semantic vectors of labels to guide models to
select the important and relevant parts of input sentences for
better performance. The above work demonstrates the supe-
riority of explicit label utilization and inspires us to make
better use of label information.
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Figure 2: Architecture of Relation of Relation Learning Network (R2-Net).

Problem Statements
In this section, we will introduce the definition of sentence
semantic matching task and our proposed relation of relation
classification task.

Sentence Semantic Matching
Sentence semantic matching task can be formulated as a
supervised classification. Given two input sentences sa =
{xa

1 ,x
a
2 , ...,x

a
la
} and sb = {xb

1,x
b
2, ...,x

b
lb
}, where xa

i and

xb
j are feature tokens for each sentence. The goal of this task

is to train a classifier ξ, which is capable of computing the
conditional probability P (y|sa, sb) and predicting the rela-
tion for input sentence pair based on the probability.

P (y|sa, sb) = ξ(sa, sb),

y∗ = argmaxy∈YP (y|sa, sb), (1)

where the true label y ∈ Y indicates the seman-
tic relation between the input sentence pair. Y =
{entailment, contradiction, neutral} for NLI task and
Y = {Y es,No} for PI task.

Relation of Relation Classification
Gururangan et al. (2018) has observed that relations can be
helpful to reveal some implicit features or patterns for se-
mantic understanding and matching. In order to properly and
fully utilize relation information, we propose a Relation of
Relation (R2) classification task to guide models to under-
stand sentence relation more precisely. Given two input sen-
tence pairs (sa1 , s

b
1) and (sa2 , s

b
2), the goal is to learn a clas-

sifying function F with the ability to identify whether these
two input pairs have the same semantic relation:

F((sa1 , s
b
1), (s

a
2 , s

b
2)) =

{
1, if y1 = y2,

0, if y1 �= y2,
(2)

where y1 and y2 stand for the semantic relations of two input
sentence pairs, respectively.

In order to make full use of relation information and do
better sentence semantic matching, the following important
questions should be considered:

• Since relations are the predicting targets, how to make full
use of relation information to improve model performance
properly without leaking it?

• How to integrate R2 task into matching task effectively
for relation usage and performance improvement?

To this end, we propose R2-Net to properly and fully uti-
lize relation information, and tackle the above issues. Next,
we will introduce the technical details of R2-Net.

Relation of Relation Learning Network
(R2-Net)

The overall architecture of R2-Net is shown in Figure 2(A).
To better describe how R2-Net tackles the above tasks and
integrates R2 task to enhance the model ability on sentence
semantic matching, similar to Section , we also elaborate
the technical details from two aspects: 1) Sentence Semantic
Matching Part; 2) Relation of Relation Learning Part.

Sentence Semantic Matching Part
This part focuses on identifying the most suitable label for a
given input sentence pair. Specifically, for an input sentence
pair, we first utilize powerful BERT to generate sentence
semantic representation globally. Meanwhile, we develop a
CNN-based encoder to capture the keywords and phrase in-
formation from a local perspective. Thus, the input sentence
pair can be encoded in a comprehensive manner. Based on
the comprehensive representation, we leverage a multi-layer
perceptron to predict the corresponding label.

Global Encoding. With the full usage of large corpus and
multi-layer transformers, BERT (Devlin et al. 2018) has ac-
complished much progress in many NLP tasks. Thus, we se-
lect BERT to generate sentence semantic representations for
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the input. Moreover, inspired by ELMo (Peters et al. 2018),
we also use the weighted sum of all the hidden states of
words from different transformer layers as the final contex-
tual representations of input words in sentences.

Specifically, we first split the input sentence pair (sa, sb)
into BPE tokens (Sennrich et al. 2015). Then, we concate-
nate two sentences to the required format, in which “[SEP]”
is adopted to concatenate two sentences and “[CLS]” is
added at the beginning and the end of the whole sequence.
Then, we use multi-layer transformer blocks to obtain the
representations of words and sentences in the input. More-
over, as illustrated in Figure 2(B), suppose there are L layers
in the BERT. The contextual word representations in the in-
put sentence pairs is then a pre-layer weighted sum of trans-
former block output, with the weights α1, α2, ..., αL.

hl
0,H

l = TransformerBlock(sa, sb),

H =
L∑

l=1

αlH
l, vg = hL

0 ,
(3)

where hl
0 denotes the representation of first token “[CLS]”

at the lth layer, and vg denotes the global semantic repre-

sentation of the input. H l represents the sequence features
of the whole input. αl is the weight of the lth layer in BERT
and will be learned during model training.

Local Encoding. The semantic relation within the sen-
tence pair is not only connected with the important words,
but also affected by the local information (e.g., phrase and
local structure). Though Bert leverages multi-layer trans-
formers to perceive important words to the sentence pair, it
still has some weaknesses in modeling local information. To
alleviate these shortcomings, we develop a CNN-based local
encoder to extract the local information from the input.

Figure 2(C) illustrates the structure of this local encoder.
The input of this encoder is the output features H from
global encoding. We use convolution operations with dif-
ferent composite kernels (e.g., bigram and trigram) to pro-
cess these features. Each operation with different kernels is
capable of modeling patterns with different sizes (e.g., new
couple, tall person). Thus, we can obtain robust and abstract
local features of the input sentence pair. Next, we leverage
average pooling and max pooling to enhance these local fea-
tures and concatenate them before sending them to a non-
linear transformation. Suppose we have K different kernel
sizes, this process can be formulated as follows:

Hk = CNNk(H), k = 1, 2, ...,K,

hk
max = max(Hk),hk

avg = avg(Hk),

hconcat = [h1
max;h

1
avg; ...;h

K
max;h

K
avg],

vl = ReLu(Whconcat + b),

(4)

where CNNk denotes the convolution operation with the
kth kernel. [·; ·] is the concatenation operation. vl represents
the local semantic representation of the input. {W , b} are
trainable parameters. ReLu(·) is the activation function.

After getting the global representation vg and local rep-
resentation vl, we investigate the different fusion methods

to integrate them together, including simple concatenation,
weighed concatenation, as well as weighted sum. Finally, we
obtain that simple concatenation is flexible and can achieve
comparable performance without adding more training pa-
rameters. Thus, we employ the concatenation v = [vg;vl] as
the final semantic representation of the input sentence pair.

Label Prediction. This component is adopted to predict
the label of input sentence pair, which is an essential part
of traditional sentence semantic matching methods. To be
specific, the input of this component is the semantic repre-
sentation v. We leverage a two-layer MLP to make the final
classification, which can be formulated as follows:

P (y|(sa, sb)) = MLP1(v). (5)

Relation of Relation Learning Part
This part aims at properly and fully using relation informa-
tion of input sentence pairs to boost the model performance.
In order to achieve this goal, we employ two critical modules
to analyze the pairwise relation and triplet based relation si-
multaneously. Next, we will describe each module in detail.

Relation of Relation Classification. Inspired by self-
supervised learning methods in BERT, we intend R2-Net to
make full use of relation information among input sentence
pairs in a similar way. Therefore, we introduce R2 classi-
fication task into sentence semantic matching. Instead of
just identifying the most suitable relation of input sentence
pairs, we plan to obtain more knowledge about the input
sentence pair by analyzing the pairwise relation between
the semantic representations (v1 for pair (sa1 , s

b
1), and v2

for pair (sa2 , s
b
2)). Since a learnable nonlinear transformation

between representations and loss substantially improves the
model performance (Chen et al. 2020), we first transfer v1

and v2 with a nonlinear transformation. Then, we leverage
heuristic matching (Chen et al. 2017) to model the similarity
and difference between v1 and v2. Next, we send the result
u to a MLP with one hidden layer for final classification.
This process is formulated as follows:

v̄1 = ReLu(Wrv1 + br),

v̄2 = ReLu(Wrv2 + br),

u = [v̄1; v̄2; (v̄1 � v̄2); (v̄1 − v̄2)],

P (ŷ|(sa1 , sb1), (sa2 , sb2)) = MLP2(u),

(6)

where concatenation can retain all the information (Zhang
et al. 2017). The element-wise product is a certain measure
of “similarity” of two sentences (Mou et al. 2016b). Their
difference can capture the degree of distributional inclusion
in each dimension (Weeds et al. 2014). ŷ ∈ {1, 0} indicates
whether two input sentence pairs have same relation.

Triplet Distance Calculation. Apart from leveraging R2

classification task to learn pairwise relation information, we
also intend to learn intra-class and inter-class information
from the triplet based relation. Thus, we introduce a triplet
loss (Schroff et al. 2015) into R2-Net. As a fundamental sim-
ilarity function, triplet loss is widely applied in information
retrieval area, and is able to reduce the distance of input pairs
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Model Full test Hard test SICK test
(1) CENN (Zhang et al. 2017) 82.1% 60.4% 81.8%
(2) CAFE (Tay, Tuan, and Hui 2017) 85.9% 66.1% 86.1%
(3) Gumbel TreeLSTM (Choi, Yoo, and Lee 2018) 86.0% 66.7% 85.8%
(4) Distance-based SAN (Im and Cho 2017) 86.3% 67.4% 86.7%
(5) DRCN (Kim et al. 2018) 86.5% 68.3% 87.4%
(6) DRr-Net (Zhang et al. 2019) 87.5% 71.2% 87.8%
(7) Dynamic Self-Attention (Yoon, Lee, and Lee 2018) 87.4% 71.5% 87.7%
(8) Bert-base (Devlin et al. 2018) 90.3% 80.8% 88.5%

(9) R2-Net 91.1% 81.0% 89.2%

Table 1: Performance (accuracy) of models on different NLI dataset.

with the same relation and increase the distance of these with
different relations. Therefore, we first calculate the distances
in this module. The inputs of this component are three se-
mantic representations: va for anchor pair (saa, s

b
a), vp for

positive pair (sap, s
b
p), vn for negative pair (san, s

b
n). In order

to obtain better results, we first transform them into a com-
mon space with a full connection layer (Chen et al. 2020).
Then, we calculate the distance between anchor and positive
pairs, and the distance between anchor and negative pairs,
respectively. This process is formulated as follows.

v̄a = ReLu(Wdva + bd),

v̄p = ReLu(Wdvp + bd),

v̄n = ReLu(Wdvn + bd),

dap = Dist(v̄a, v̄p), dan = Dist(v̄a, v̄n),

(7)

where {Wd, bd} are trainable parameters. Dist(·) is the dis-
tance calculation function.

Experiments
In this section, the details about model implementation are
firstly presented. Then, five benchmark datasets on which
the model is evaluated are introduced. Next, a detailed anal-
ysis about the model and experimental results is made.

Training Details
Loss Function. Since sentence semantic matching and R2

task can be treated as classification tasks, we employ Cross-
Entropy as the loss for each input as follows:

Ls = −yilogP (yi|(sai , sbi )),
LR2 = −ŷilogP (ŷ|((sa1 , sb1), (sa2 , sb2))i),

(8)

where yi is the one-hot vector for the true label of the ith

instance. ŷi is the one-hot vector for the true relation of re-
lations of the ith instance pair.

Moreover, in order to learn more from relations and
achieve better performance, we also introduce the triplet loss
to force R2-Net to better analyze the intra-class and inter-
class information among sentence pairs with same or differ-
ent relations:

Ld = max((dap − dan + α)i, 0), (9)

where α is the margin. (·)i denotes the ith triplet pair.

Model SciTail test
(1) CAFE (2017) 83.3%
(2) ConSeqNet (2018b) 85.2%
(3) BiLSTM Max-Out (2018) 85.4%
(4) HBMP (Talman et al.2018) 86.0%
(5) DRr-Net (2019) 87.4%
(6) Transformer LM (2018) 88.3%
(7) Bert-base (2018) 92.0%

(8) R2-Net 92.9%

Table 2: Experimental Results (accuracy) on SciTail dataset.

Since these three loss functions require different num-
ber of inputs, we modify the input of R2-Net to have three
input sentence pairs (i.e., anchor pair, positive pair, and
negative pair), as shown in Figure 2(A). Then, we calcu-
late L1

s, L
2
s, L

3
s for label prediction loss of each input pair,

randomly sample two groups from the input to calculate
L1
R2 , L2

R2 for R2 task loss, and use three input pairs to cal-
culate Ld for triplet loss. Finally, we treat the weighed sum
of these losses with a hyper-parameter β as the loss function
for entire model as follows:

L =
1

N

N∑
i=1

(β
L1
s + L2

s + L3
s

3

+ (1− β)(
L1
R2 + L2

R2

2
+ Ld)).

(10)

Model Implementation. We have tuned the hyper-
parameters on validation set for best performance, and have
used early-stop to select the best model. Some common
hyper-parameters are listed as follows:

We apply the BERT-base with 12 layers, hidden size 768,
and 12 heads. The kernel sizes of CNN in local encoding unit
are dk = 1, 2, 3. The hidden state size of MLP in R2-Net is
dm = 300. The distance calculation is Euclidean Distance.
The margin α in the triplet loss is α = 0.2. For the pre-
trained BERT, we set the learning rate 10−5 and use AdamW
to fine-tune the parameters. For the rest of parameters, we set
the initial learning rate as 10−3 and decrease its value as the
model training. An Adam optimizer with β1 = 0.9 and β2 =
0.999 is adopted to optimize these parameters. The entire
model is implemented with PyTorch and Transformers1, and
is trained on two Nvidia Tesla V100-SXM2-32GB GPUs.

1https://github.com/huggingface/transformers
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Model Quora test MSRP test
(1) CENN (Zhang et al. 2017) 80.7% 76.4%
(2) L.D.C (Wang, Mi, and Ittycheriah 2016) 85.6% 78.4%
(3) REL-TK (Filice et al. 2015) - 79.1%
(4) BiMPM (Wang, Hamza, and Florian 2017) 88.2% -
(5) pt-DecAttachar.c (Tomar et al. 2017) 88.4% -
(6) DIIN (Gong, Luo, and Zhang 2017) 89.1% -
(7) DRr-Net (Zhang et al. 2019) 89.8% 82.9%
(8) DRCN (Kim et al. 2018) 90.2% 82.5%
(9) BERT-base (Devlin et al. 2018) 91.0% 84.2%

(10) R2-Net 91.6% 84.3%

Table 3: Experimental Results (accuracy) on Quora and MSRP datasets.

Data Description
In this section, we give a brief introduction of the datasets
on which we evaluate all models. They are as follow:

• SNLI: SNLI dataset (Bowman et al. 2015) contains
570, 152 human annotated sentence pairs. The premise
sentences are drawn from the captions of Flickr30k cor-
pus (Young et al. 2014), and the hypothesis sentences
are manually composed. Despite the original test set, we
also select the challenging hard subset (Gururangan et al.
2018) to evaluate the models.

• SICK: SICK dataset (Marelli et al. 2014) contains 10, 000
English sentence pairs, generated from 8K ImageFlickr
dataset (Hodosh et al. 2013) and STS MSR-video descrip-
tion dataset2. Each sentence pair is generated from ran-
domly selected subsets of the above sources and manually
labeled with the label set as SNLI did.

• SciTail: SciTail dataset (Khot et al. 2018) is created from
multiple-choice science exams and web sentences. It has
27, 026 examples with 10, 101 Entailment examples and
16, 925 Neutral examples.

• Quora: Quora dataset (Iyer et al. 2019) contains over
400, 000 potential question duplicate pairs, which are
drawn from Quora website3. This dataset has balanced
positive and negative labels, indicating whether the line
truly contains a duplicate pair.

• MSRP: MSRP dataset (Dolan and Brockett 2005) con-
sists of 5, 801 sentence pairs with a binary label. The
sentences are distilled from a database of 13, 127, 938
sentence pairs, extracted from 9, 516, 684 sentences in
32, 408 news clusters from the web.

Experimental Results
In this section, we will give a detailed analysis about models
and experimental results. We have to note that we use accu-
racy on different test sets to evaluate the model performance.

Performance on NLI task. We compared our proposed
R2-Net to several published state-of-the-art baselines on dif-
ferent NLI datasets. All results are summarized in Table 1
and Table 2. Several observations are presented as follows.

2https://www.cs.york.ac.uk/semeval-2012/
3https://www.quora.com/

• It is clear that R2-Net achieves highly comparable per-
formance over all the datasets: SNLI, SICK, and SciTail.
Specifically, R2-Net first fully uses BERT and CNN-based
encoder to get a comprehensive understanding of sentence
semantics from global and local perspectives. This is one
of the reasons that R2-Net outperforms other BERT-free
baselines by a large margin. Another important reason is
that R2-Net employs R2 task and triplet loss to make full
use of relation information. Along this line, R2-Net is ca-
pable of obtaining intra-class and inter-class knowledge
among sentence pairs with the same or different relations.
Thus, it can achieve better performance than all baselines,
including the BERT-base model.

• R2-Net has more stable performance on the challenging
NLI hard test, in which the pairs with obvious identical
words are removed (Gururangan et al. 2018). Despite the
obvious indicators, these still have implicit patterns for
relations among sentence pairs. By considering R2 task
and triplet loss, R2-Net has the ability to fully use relation
information and obtain the implicit information, which
leads to a better performance.

• BERT-base model (Devlin et al. 2018) outperforms other
BERT-free baselines by a large margin. The main rea-
sons can be grouped into two parts. First, BERT takes
advantages of multi-layer transformers to learn sentence
patterns and sentence semantics on a large corpus. Sec-
ond, BERT adopts two self-supervised learning tasks (i.e.,
MLM and NSP) to better analyze the important words
within a sentence and semantic connection between sen-
tences. However, BERT still focuses on the input se-
quence, underestimating the rich semantic information
that relations imply. Therefore, its performance is not as
good as that R2-Net achieves.

• Among BERT-free baselines, DRr-Net (Zhang et al. 2019)
and dynamic self-attention (Yoon, Lee, and Lee 2018)
achieve impressive performances. First, their performance
proves that multi-layer structure and CNN have better
ability to model sentence semantics from global and local
perspectives. Then, they all develop a dynamic attention
mechanism to improve self-attention mechanism. How-
ever, their encoding capability of extracting features or
generating semantic representations is still not compara-
ble with BERT. This observation inspires us that using
powerful BERT as a basic encoder will be a better choice.
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Figure 3: Visualization of representation v from R2-Net and BERT-base models.

Performance on PI task. Apart from NLI task, we also
select PI task to evaluate the model performance. PI task
concerns whether two sentences express the same meaning
and has broad applications in question answering communi-
ties4 5. Table 3 reports the performance of models on differ-
ent datasets. We also list the observations as follows:

• R2-Net still achieves highly competitive performance over
other baselines. The results demonstrate that R2 task and
triplet loss is effective in helping our proposed model to
learn more about relations and improve the model perfor-
mance, even if the number of relations is small.

• Almost all models have a better performance on Quora
dataset than MSRP dataset. One possible reason is that
Quora dataset has more data than MSRP dataset (over
400k sentences pairs v.s. 5,801 sentence pairs). In addi-
tion to the data size, inter-sentence interaction is proba-
bly another reason. Lan et al. (2018) observes that Quora
dataset contains many sentence pairs with less com-
plicated interactions (many identical words in sentence
pairs). Meanwhile, R2-Net also achieves better improve-
ment on Quora dataset, indicating that more data or better
label utilization method is needed for further performance
improvement on MSRP dataset.

Ablation Performance. The overall experiments have
proved the superiority of R2-Net. However, which part plays
a more important role in performance improvement is still
unclear. Therefore, we perform an ablation study to verify
the effectiveness of each part, including CNN-based local
encoder, R2 task classification, and triplet loss. The results
are illustrated in Table 4. Note that we select BERT-base as
the baseline to compare the importance of each part. Accord-
ing to the results, we can observe varying degrees of model
performance decline. Among all of them, R2 task has the
biggest impact, and triple loss has a relatively small impact
on the model performance. These observations prove that R2

task is more important for relation information utilization.

Case Study. To provide some intuitionistic examples for
explaining why our model gains a better performance than

4https://www.quora.com/
5https://www.zhihu.com/

Model SNLI test SciTail test
(1) Bert-base 90.3% 92.0%

(2) R2-Net (w/o local encoder) 90.7% 92.6%

(3) R2-Net (w/o R2 task learning) 90.5% 92.3%

(4) R2-Net (w/o triplet loss) 90.9% 92.6%

(5) R2-Net 91.1% 92.9%

Table 4: Ablation performance (accuracy) of R2-Net.

other baselines, we sample 700 sentence pairs from SNLI
dataset and send them to R2-Net and BERT-base models to
generate the semantic representation v. Then, we leverage
t-sne (Maaten and Hinton 2008) to visualize these repre-
sentations with the same parameter settings. Figure 3(A)-
(B) report the results of R2-Net and BERT-base models, re-
spectively. By comparing two figures, we can obtain that the
representations generated by R2-Net have closer inter-class
distances. Moreover, the representations have more obvious
distinctions between different classes. These observations
not only explain why our proposed R2-Net achieves impres-
sive performance, but also demonstrates that proper usage of
relation information is able to guide models to analyze sen-
tence semantics more comprehensively and precisely, which
is in favor of tackling sentence semantic matching.

Conclusion
In this paper, we presented a simple but effective method
named R2-Net for sentence semantic matching. This method
not only uses powerful BERT and CNN to encode sen-
tences from global and local perspectives, but also makes
full use of relation information for better performance en-
hancement. Specifically, we design a R2 classification task
to help R2-Net for learning the implicit common knowledge
from the pairwise relation learning processing. Moreover, a
triplet loss is employed to constrain R2-Net for better triplet
based relation learning and intra-class and inter-class in-
formation analyzing. Extensive experiments on NLI and PI
tasks demonstrate the superiority of R2-Net. In the future, we
plan to combine the advantages of label embedding method
for better sentence semantic comprehension.
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