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ABSTRACT
Multimedia-based recommendation models learn user and item
preference representation by fusing both the user-item collabora-
tive signals and the multimedia content signals. In real scenarios,
cold items appear in the test stage without any user interaction
record. How to perform cold item recommendation is challenging
as the training items and test items have different data distributions.
These hybrid preference representations contained auxiliary collab-
orative signals, so current solutions designed alignment functions
to transfer learned hybrid preference representations to cold items.
Despite the effectiveness, we argue that they are still limited as
these models relied heavily on the manually carefully designed
alignment functions, which are easily influenced by the limited
item records and noises in the training data.

To tackle the above limitations, we propose a Generative cold-
start Recommendation (GoRec) framework for multimedia-based
new item recommendation. Specifically, we design a Conditional
Variational AutoEncoder (CVAE) based method that first estimates
the underlying distribution of each warm item conditioned on the
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multimedia content representation. Then, we propose a uniformity-
enhanced optimization objective to ensure the latent space of CVAE
is more distinguishable and informative. In the inference stage,
a generative approach is designed to obtain warm-up new item
representations from the latent distribution. Please note that GoRec
is applicable to arbitrary recommendation backbones. Extensive
experiments on three real datasets and various recommendation
backbones verify the superiority of our proposed framework. The
code is available at https://github.com/HaoyueBai98/GoRec.
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1 INTRODUCTION
Personalized recommendations have become essential in various
online applications such as e-commerce and advertising to help
users manage information overload [4, 23, 36, 37]. Learning precise
user and item representations is the key to building an effective
recommender. Among this field, the multimedia-based recommen-
dation is becoming an attractive research area, which fully takes
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advantage of both user-item interactions and rich-information mul-
timedia content for representation learning [10, 34, 35]. In gen-
eral, multimedia-based recommendation feeds multimedia content
and ID as input to the embedding layer for user and item repre-
sentation learning, then models interactions by inner product or
neural networks. Despite the effectiveness to provide high-quality
representations for recommendation demand, multimedia-based
recommenders still fail to generalize to cold-start recommendation
scenarios. In real scenarios, cold items quickly emerge over time,
especially on the news or short-video recommendation platforms.
Cold items have only multimedia content while lacking historical
interactions, so how to generate high-quality item representations
is the key challenge to cold-start item recommendations.

To overcome this problem, a common solution is to use multime-
dia content (e.g., image [18], text [8], knowledge graph [30]) as the
bridge between well-trained warm item representations and cold
item representations. To make the distribution of warm and cold
representations consistent, previous works[1, 2, 33, 45] attempt to
narrow the distance between warm representations and content
representations by elaborately designing alignment functions (e.g.,
sum square error[45], mutual information maximization [33]). Then
warm-up cold items by using the corresponding content represen-
tations. Despite the effectiveness, we argue that this schema still
has some limitations. Concretely, (1) the alignment functions need
to be carefully designed, and it is difficult to guarantee that the
distribution of warm and cold representations can be consistent
through the functions [33]. Moreover, the cold embeddings are gen-
erated from contents while the warm item embeddings are learned
from both historical interactions and content, making the warm
items have inherently more information. The way of bringing the
two distributions close to each other may reduce the representation
ability of warm items. (2) One-to-one alignment for each discrete
sample pair may make the model affected by some noise [31, 44].

In this work, we innovatively break the alignment function-based
schema and propose a Generative cold Recommendation (GoRec)
framework for multimedia-based new item recommendation.GoRec
directly models the conditional distribution of warm embeddings
solely based on content. By modeling the distribution, the warm
representation can be obtained from the contents during the test
phase, irrespective of the availability of historical interaction data.
This generative approach fundamentally solves the previous limita-
tions. GoRec is a CVAE-based framework. Specifically, we first use
pre-train warm user and item representations as the input. Then,
we estimate the underlying distribution of latent variable condi-
tioned on the multimedia content representation. Following this,
we generate pseudo item representations by conditionally sampling
from the estimated distribution. Based on the generated and the pre-
trained item representations, we build the well-known ELBO-based
optimization objective. Besides, we design a uniformity-enhanced
optimization objective to ensure the latent space of CVAE is more
distinguishable and informative. In the test stage, for each cold
item, we first sample a latent variable from an estimated latent
distribution, then combine the corresponding multimedia content
to generate item representation for recommendations. Consider-
ing that random sampling ignores the characteristics of the cold
item, we devise a cluster-aware approach to obtain the item’s fuzzy
pre-trained representations, then the item’s latent distribution is

estimated with the combination of the fuzzy representations and
multimedia content. Our major contributions are listed as follows:

• We propose a novel CVAE-based generative cold-start item
recommendation framework (GoRec ) for multimedia-based
new item recommendation, which can generate high-quality
new item representations according to the content features.

• We design a uniformity-enhanced optimization objective
to ensure the latent space of CVAE is more distinguishable
and informative. We devise a cluster-aware approach to ob-
tain the item’s fuzzy pre-trained representations to better
generate item representations.

• We conduct extensive experiments on three real-world datasets
to demonstrate the superiority and effectiveness of the pro-
posed model in new item recommendation tasks.

2 PROBLEM FORMULATION
Implicit Recommendation. In this paper, we focus on the im-
plicit feedback recommendation scenario and let U(|U| = 𝑁 ) and
V(|V| = 𝑀) denote the sets of users and items. Besides, every
item has multimedia content features, which can be transformed
into content representations via a generic feature extractor. We
denote the content representation of items as C ∈ R𝑀×𝑑𝑐 . c𝑗 ∈ R𝑑𝑐
denote content representation of item 𝑗 . Let 𝑹 ∈ R𝑀×𝑁 be the
user-item interaction matrix, 𝑅𝑖 𝑗 = 1 if user 𝑖 has interacted with
item 𝑗 , otherwise 𝑅𝑖 𝑗 = 0. The aim of implicit recommendation
model F𝜋 is to infer the probability 𝑦𝑖 𝑗 of user 𝑖 preferring item 𝑗 :

𝑦𝑖 𝑗 = F𝜋 (P(𝑖),Q( 𝑗, c𝑗 ),R), (1)

whereP andQ are user and item embedding layer, respectively. The
parameters are learned during the training process. We denote the
F ∗
𝜋 as the optimal recommendation backbone trained in the warm

user and item set (users and items with historical interactions).
Item Cold Start Problem. In the item cold-start problem, a cold
item has been interacted with by limited users. In this work, we
focus on the completely cold-start problem, that performs recom-
mendations to the new items set Vnew ( |Vnew | = 𝑀new) without
any historical interactions. The challenges posed by item cold start
problem are the warm items in the training process and the test new
items have different data distributions, and it is hard to generate
effective new item representation to feed into the recommendation
model F ∗

𝜋 . Our work focuses on how to learn a good new item em-
bedding model Qnew (·). The ultimate goal is to infer the probability
𝑦𝑖 𝑗 user 𝑖 preferring new item 𝑗 :

𝑦𝑖 𝑗 = F ∗
𝜋 (P(𝑖),Qnew ( 𝑗, c𝑗 )) . (2)

We aim to build a recommendation model-agnostic framework, and
thus the choice of F ∗

𝜋 can be arbitrary.

3 METHODOLOGY
In this section, we introduce the proposed Generative cOld Recom-
mendation (GoRec) framework for cold-start item recommendations,
which could be applied to all existing recommendation models. In
the following part, we first introduce each part of GoRec in detail.
After that, we elaborate on the learning algorithm and new item
recommendation process.
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Figure 1: Model overview.

3.1 Framework Architecture
Multimedia-based recommendation models learn user and item
preference representation by fusing both the user-item collabo-
rative signals and the multimedia content signals. The challenge
caused by cold-start item problems is the absence of new item pref-
erence representations, which should contain collaborative signals.
In GoRec, we aim to estimate the underlying distribution of item
preference representation conditioned on the multimedia content
representation. Then we can obtain preference representations of
new items easily from this distribution. As illustrated in Figure 1,
GoRec consists of two main components, the preference pretraining
module (PPM), and the preference reconstruction module (PRM).
The former learns the item preference representations from the
warm users and items. Then, the preference reconstruction module
is responsible for learning the distribution of item preference rep-
resentation conditioned on the multimedia content representation.
In this subsection, we elaborate on these two modules.

3.1.1 Preference Pretraining Module. The function of PPM is
to learn the item preference representations from the warm user
set and warm item set. Generally, PPM contains two steps: (1) the
embedding layer to obtain preference representations of users and
items, (2) the interaction layer to infer the probability of users prefer-
ring items. After training, we get the item preference representation
from the first step.

Formally, given the warm user set U and warm item set V ,
item content representations C, and user-item interaction matrix
𝑹 ∈ R𝑀×𝑁 , PPM serves for inferring the preference probability 𝑦𝑖 𝑗
of user 𝑖 to item 𝑗 :

𝑦𝑖 𝑗 = F𝜋 (P(𝑖),Q( 𝑗, c𝑗 ),R), (3)

where P and Q are user and item embedding layer, respectively. F𝜋
is the recommendation backbone. The architecture of P,Q, F𝜋 can
be arbitrary, and all existing embedding-based recommender sys-
tems can be chosen, such as VBPR [10], LightGCN [11], SimGCL [40].
When training the PPM, the classical BPR loss [20] could be adopted:

LBPR =
∑︁

(𝑖, 𝑗, 𝑗 ′ ) ∈U∪V
− ln𝜎

(
𝑦𝑖 𝑗 − 𝑦𝑖 𝑗 ′

)
+ 𝜆∥Θ∥2, (4)

where Θ includes all model parameters, 𝜆 is the hyper-parameter of
regularization, 𝑗 ′ is the negative sample item of 𝑖 . After the training
process, we can obtain item preference representation of warm
item 𝑗 as follows:

v𝑗 = Q( 𝑗, c𝑗 ). (5)

3.1.2 Preference Reconstruction Module. Upon the PPM, we
further build PRM which uses a latent variable for learning the
distribution of the coherent item preference representation. In
PRM, item preference representation v is generated conditioned
on the given corresponding content representation c and a latent
variable z, which captures the distribution of the preference rep-
resentations. Formally, we define the conditional distribution as
𝑝 (v|c) =

∫
z 𝑝 (v|c, z)𝑝 (z|c)𝑑z. Since the integration over z is in-

tractable, we therefore use neural networks to estimate and apply
variational inference to optimize the corresponding evidence lower
bound (ELBO):

log𝑝 (v|c) = log
∫
z
𝑝 (v|c, z)𝑝 (z|c)𝑑z

≥ E𝑞𝜙 (z |c,v) [log 𝑝𝜃 (v|c, z)] − 𝐾𝐿
(
𝑞𝜙 (z|c, v)∥𝑝𝜃 (z|c)

)
,

(6)
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where 𝑝𝜃 (z|c) is the prior net, 𝑞𝜙 (v|c, z) is the preference generator,
and 𝑞𝜙 (z|c, v) is the posterior net. 𝐾𝐿 denotes the KL-divergence.
We assume that z follows multivariate Gaussian distribution with
a diagonal covariance matrix. Then we describe the three neural
networks mentioned above.

Prior Net. The prior net 𝑝𝜃 (z|c) aims to encode the given con-
tent features to the latent space. We first extract raw multimedia
features into low-dimension representations and then project them
to latent space of z. Several generic feature extractors (such as
ResNet [9] and BERT[5]) are used to extract features in different
modals. We then integrate them by concatenation to get the content
representation c𝑖 ∈ R𝑑𝑐 of each item 𝑖 . However, it is impossible
to guarantee all new items have the same content representations
as the old. To give the model the ability to process unseen content
representation, we propose randomly masking part of the content
representation for training:

C𝑚 = M ⊙ C, (7)

where M ∈ R𝑀×𝑑𝑐 is a mask matrix randomly generated and ⊙
represents the element-wise multiplication. We use c𝑚

𝑖
to denote

the masked content representation of item 𝑖 . Since we assume z
follows isotropic Gaussian distribution, thus 𝑝 (z|c) ∼ N

(
𝜇, 𝜎2I

)
,

the prior net estimate the 𝜇 and 𝜎 use two linear layer as:

𝜇𝑖 = c𝑚𝑖 ·W𝜇 + b𝜇 , 𝜎𝑖 = c𝑚𝑖 ·W𝜎 + b𝜎 , (8)

where W𝜇 ,W𝜎 ∈ R𝑑𝑐×𝑑𝑧 and b𝜇 , b𝜎 ∈ R𝑑𝑧 are the parameters to
be learned, 𝑑𝑧 is the dimension of latent variable z.

Posterior Net. The posterior net 𝑞𝜙 (z|c, v) can be viewed as an
encoder, that encodes both the item preference representations and
masked content representation into the latent space. Similarly, we
assume 𝑝 (z|c, v) ∼ N

(
𝜇′, 𝜎′2I

)
, then we use two linear transforma-

tion function and have:

𝜇′𝑖 = [v𝑖 ; c𝑚𝑖 ] ·W𝜇′ + b𝜇′ , 𝜎′𝑖 = [v𝑖 ; c𝑚𝑖 ] ·W𝜎 ′ + b𝜎 ′ , (9)

where W𝜇′ ,W𝜎 ′ ∈ R(𝑑𝑐+𝑑𝑣 )×𝑑𝑧 and b𝜇′ , b𝜎 ′ ∈ R𝑑𝑧 are the parame-
ters to be learned, and [·; ·] indicates the operation of concatenate.

Preference Generator. The preference generator 𝑞𝜙 (v|c, z) is a
decoder. Given a random sample z𝑖 inN

(
𝜇′
𝑖
, 𝜎

′2
𝑖
I
)
and c𝑚

𝑖
, the pref-

erence generator reconstructs the item preference representation as
v′
𝑖
. Direct sampling would make the entire model non-differentiable,

rendering existing optimization methods unable to calculate gra-
dients. To address this problem, the reparameterization trick [13]
is applied. It works as follows: Instead of directly sampling from
N(𝜇′

𝑖
, 𝜎

′2
𝑖
I), we first sample from a standard normal distribution

𝜖 ∼ N(0, I), and then we can get:

z𝑖 = 𝜇′𝑖 + 𝜎
′
𝑖 ⊙ 𝜖. (10)

Since sampling from 𝜖 does not depend on the network, it makes
the proposed model differentiable again. Then we try to reconstruct
v𝑖 by parameterizing 𝑝𝜃 (v|z, c) as follows:

v′𝑖 = 𝑓𝜓 ( [z𝑖 ; c
𝑚
𝑖 ]). (11)

Herein, 𝑓𝜓 (·) is a simple but effective MultiLayer Perception (MLP),
and𝜓 denote parameters of 𝑓𝜓 (·).

3.2 Uniformity Enhanced Optimization
The learning process consists of two stages. First, we pre-train the
preference pretraining module in warm datasets by minimizing the
LBPR as described in Eqn. 4. After optimization, we train the pref-
erence reconstruction module. In the following, we will elaborate
on the training details of the preference reconstruction module.

ELBO Loss. Following the loss of CVAE, and as mentioned in
Eqn. 6, we define the ELBO loss as:

L𝐸𝐿𝐵𝑂 = L𝑟𝑒𝑐 + L𝑘𝑙

= −Ez∼𝑞𝜙 (z |v,c) [log(𝑝𝜃 (v|z, c))] + 𝐾𝐿[𝑞𝜙 (z|v, c) | |𝑝𝜃 (z|c)],
(12)

where the 𝑞𝜙 (z|v, c), 𝑝𝜃 (v|z, c), and 𝑝𝜃 (z|c) are posterior net, pref-
erence generator, and prior net, respectively. The first optimization
objective is the reconstruction loss, and we implement it by mini-
mizing the mean square error between v and v′:

L𝑟𝑒𝑐 = −Ez∼𝑞𝜙 (z |v,c) [log(𝑝𝜃 (v|z, c))] =
1
𝑀

1
𝑑𝑣

𝑀∑︁
𝑖=0

𝑑𝑣∑︁
𝑗=0

(v𝑖 𝑗 − v′𝑖 𝑗 )2,

(13)
where v𝑖 𝑗 and v′𝑖 𝑗 denote value of the 𝑗𝑡ℎ dimension of the rep-
resentation v𝑖 and v′𝑖 . The second term is in charge of measuring
the KL-divergence between the prior distribution 𝑝𝜃 (z|c) and the
approximate posterior 𝑞𝜙 (z|v, c). It is implemented as follows:

L𝑘𝑙 = 𝐾𝐿[𝑞𝜙 (z|v, c) | |𝑝𝜃 (z|c)] =
1
𝑀

𝑀∑︁
𝑖=0

𝐾𝐿[N (𝜇′𝑖 , 𝜎
′2
𝑖 ) | |N (𝜇, 𝜎2)] .

(14)
Uniformity Loss. Since ELBO has no constraints on the dis-

tribution of different contents in the latent space, this may lead
to insufficient discrimination of samples from the latent space. To
alleviate this limitation, we propose making the centers of latent
spaces more uniform, which can make different latent spaces more
distinguishable and keep their unique information. Our uniformity
loss is formulated as:

L𝑢𝑛𝑖 = 𝑙𝑜𝑔 E
𝑖, 𝑗∈V

𝑒−2∥𝜇𝑖−𝜇 𝑗 ∥
2
/2. (15)

The grey rectangle in Figure 1 visually shows the role of our goal.
L𝑢𝑛𝑖 aims to ensure that latent spaces are distinguishable. It makes
the latent variable sampled belong to a definite latent space, rather
than belonging to several latent spaces at the same time. The upper
right corner of the preference reconstruction module in Figure 1
visually shows the role of the Uniformity optimization goals. The
pentagram represents the latent variable z, and the uniformity
optimization makes z belong to a certain latent space and not be
covered by more than one at the same time.

In summary, the final optimization object of the preference re-
construction module is as follows:

L = L𝐸𝐿𝐵𝑂 + 𝛼L𝑢𝑛𝑖 , (16)

herein, 𝛼 is used to adjust the weight of uniformity loss. Through
optimization, well-trained parameters can parameterize the distri-
butions 𝑞𝜙 (z|v, c), 𝑝𝜃 (z|c), 𝑝𝜃 (v|z, c). The overall training process
of GoRec is shown in Algorithm 1.
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Algorithm 1: The Training of GoRec

Input: Pre-trained item preference representation V;
Output: Parameters𝜓 ,W𝜇 ,b𝜇 ,b𝜎 ,b𝜎 and W𝜇′ ,b𝜇′ ,b𝜎 ′ ,b𝜎 ′ ;
1: Randomly initialize all parameters;
2: Randomly mask 𝜌 content representation (Eqn.7);
3: while not converged do
4: Sample a batch of pre-trained item preference

representation;
5: Calculate prior latent space 𝜇𝑖 and 𝜎𝑖 (Eqn.8);
6: Calculate latent space 𝜇′

𝑖
and 𝜎′

𝑖
(Eqn.9);

7: Sample latent variable z by reparameterization (Eqn.10);
8: Reconstructed pre-trained item preference

representation (Eqn.11);
9: Compute reconstruction loss L𝑟𝑒𝑐 (Eqn.13);
10: Compute KL loss L𝑘𝑙 (Eqn.14);
11: Compute uniformity loss L𝑢𝑛𝑖 (Eqn.15);
12: Update all parameters according to (Eqn.16);
13: end while
14: Return𝜓 ,W𝜇 ,b𝜇 ,b𝜎 ,b𝜎 and W𝜇′ ,b𝜇′ ,b𝜎 ′ ,b𝜎 ′ .
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Figure 2: Generation of preference representations of new items.

3.3 New Item Recommendation Process
Given the learned parameters, we can generate preference repre-
sentations that are related to specific content features. When a
new item is coming, a naive CVAE model samples a latent variable
z𝑛𝑒𝑤 from the prior distribution 𝑝 (z|c) and then z𝑛𝑒𝑤 and content
representation c𝑛𝑒𝑤 are used to generate preference representation
by 𝑝𝜃 (v|z, c). In GoRec, we try to provide more information to lo-
cate a more accurate latent space using 𝑞𝜙 (z|v, c). We propose a
cluster-aware item approach to get a new item’s fuzzy preference
representation input into GoRecto generate the final preference
representation v𝑛𝑒𝑤 .

Calculation of central representation.Weuse the K-Means [16]
algorithm to cluster old items into k classes according to content
representations. For each cluster, we calculate two central represen-
tations, the preference central representation v𝑘 , and the content
central representation c𝑘 , which can be represented as:

v𝑘 =
1
𝑁𝑘

∑︁
𝑖∈𝑆𝑘

v𝑖 , c𝑘 =
1
𝑁𝑘

∑︁
𝑖∈𝑆𝑘

c𝑖 , (17)

where 𝑁𝑘 is the number of items in the 𝑘𝑡ℎ cluster, and 𝑆𝑘 is the
set of old items that belong to the 𝑘𝑡ℎ cluster.

Selection of the most similar cluster.When a new item ar-
rives, we first calculate the distance between new item’s content

Table 1: The statistics of datasets.

Dataset Baby Clothing Sports

Train

# Users 19442 39384 35592
# Items 5640 18427 14686
# Interactions 128963 222759 237111
Density 0.00118 0.00031 0.00045

Val # Users 10342 19801 18578
# New Items 705 2303 1836

Test # Users 10474 19858 19876
# New Items 705 2303 1835

representation c𝑛𝑒𝑤 and each content central representation c𝑘 .
Then we select a cluster 𝑘𝑛𝑒𝑤 with the smallest distance, which can
be represented as:

𝑘𝑛𝑒𝑤 = argmin
𝑘

∥c𝑛𝑒𝑤 − c𝑘 ∥2 . (18)

Generation of the new item representation. v𝑘𝑛𝑒𝑤 denote
the preference central representation of cluster 𝑘𝑛𝑒𝑤 . Then we
construct latent space according to 𝑞𝜙 (z|v, c) as follows:

𝜇′𝑛𝑒𝑤 = [v𝑘𝑛𝑒𝑤 ; c𝑛𝑒𝑤] ·W𝜇′ + b𝜇′ , (19)

𝜎′𝑛𝑒𝑤 = [v𝑘𝑛𝑒𝑤 ; c𝑛𝑒𝑤] ·W𝜎 ′ + b𝜎 ′ , (20)
z𝑛𝑒𝑤 = 𝜇′𝑛𝑒𝑤 + 𝜎′𝑛𝑒𝑤 ⊙ 𝜖. (21)

Final, the preference representation v𝑛𝑒𝑤 of new item can be gen-
erate by 𝑝𝜃 (v|z, c) as follows:

v𝑛𝑒𝑤 = 𝑓𝜓 ( [z𝑛𝑒𝑤 ; c𝑛𝑒𝑤]) . (22)

Finally, generated v𝑛𝑒𝑤 is directly fed to the optimal recommen-
dation backbone F ∗

𝜋 to get the probability of users preferring new
items, as described in Eqn. 2.

4 EXPERIMENT
In this section, we conduct extensive experiments on three real-
world datasets, which aim to answer the following questions:

• RQ1: How does our model perform compared with other
state-of-the-art baselines on multimedia-based cold-start rec-
ommendation scenarios?

• RQ2: How do different designed components play roles in
our proposed model?

• RQ3: How does the pre-trained preference representation
affect new item recommendation?

• RQ4: How do different hyper-parameters influence recom-
mendation performances of the proposed model?

4.1 Experimental Settings
4.1.1 Datasets Description. We conduct experiments on threewidely
used Amazon datasets introduced by McAuley et al.[17]: (a) Cloth-
ing, Shoes, and Jewelry, (b) Sports and Outdoors, and (c) Baby. To
simplify reading. The three datasets have rich multimedia informa-
tion, including images and texts for each item. We use the extracted
visual and textual features [41]. We randomly select 20% items and
delete their historical interactions in the training process. Among
them, we further divide half as validation and the remaining as test
items. The statistics of the pre-processed datasets are summarized
in Table 1.
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Table 2: Performance comparisons with different Top-N values on three datasets.

Metric Models Baby Clothing Sports
K=10 K=20 K=30 K=40 K=10 K=20 K=30 K=40 K=10 K=20 K=30 K=40

Recall@K

KNN 0.0174 0.0300 0.0418 0.0518 0.0209 0.0354 0.0479 0.0599 0.0206 0.0321 0.0443 0.0545
DUIF 0.0220 0.0410 0.0601 0.0733 0.0272 0.0457 0.0621 0.0770 0.0231 0.0417 0.0577 0.0720

DropoutNet 0.0118 0.0244 0.0349 0.0453 0.0142 0.0263 0.0373 0.0475 0.0132 0.0238 0.0338 0.0424
MTPR 0.0195 0.0390 0.0561 0.0725 0.0179 0.0334 0.0459 0.0586 0.0189 0.0356 0.0496 0.0645
Heater 0.0232 0.0386 0.0541 0.0680 0.0384 0.0640 0.0842 0.1018 0.0390 0.0625 0.0828 0.1005
CLCRec 0.0289 0.0497 0.0687 0.0880 0.0378 0.0629 0.0848 0.1026 0.0360 0.0588 0.0756 0.0912
GAR 0.0299 0.0502 0.0686 0.0849 0.0393 0.0634 0.0851 0.1028 0.0385 0.0651 0.0876 0.1074
CVAE 0.0261 0.0439 0.0596 0.0727 0.0435 0.0710 0.0932 0.1097 0.0399 0.0663 0.0894 0.1095

GoRec-VBPR 0.0313 0.0507 0.0707 0.0852 0.0433 0.0713 0.0908 0.1084 0.0402 0.0657 0.0858 0.1027
GoRec-VLGCN 0.0288 0.0493 0.0692 0.0843 0.0416 0.0670 0.0872 0.1071 0.0388 0.0679 0.0911 0.1108
GoRec-VSGCL 0.0456 0.0703 0.0915 0.1082 0.0575 0.0929 0.1168 0.1364 0.0515 0.0828 0.1094 0.1309

NDCG@K

KNN 0.0103 0.0137 0.0165 0.0186 0.0126 0.0165 0.0194 0.0219 0.0126 0.0158 0.0187 0.0208
DUIF 0.0112 0.0164 0.0208 0.0237 0.0144 0.0186 0.0233 0.0264 0.0119 0.0170 0.0208 0.0239

DropoutNet 0.0056 0.0091 0.0116 0.0138 0.0073 0.0107 0.0132 0.0154 0.0075 0.0105 0.0128 0.0147
MTPR 0.0103 0.0157 0.0198 0.0233 0.0089 0.0131 0.0160 0.0187 0.0100 0.0146 0.0179 0.0212
Heater 0.0120 0.0162 0.0198 0.0227 0.0199 0.0269 0.0315 0.0352 0.0214 0.0289 0.0338 0.0376
CLCRec 0.0168 0.0225 0.0270 0.0311 0.0199 0.0257 0.0333 0.0370 0.0214 0.0277 0.0317 0.0351
GAR 0.0160 0.0216 0.0260 0.0295 0.0209 0.0275 0.0325 0.0362 0.0224 0.0288 0.0341 0.0384
CVAE 0.0137 0.0187 0.0223 0.0251 0.0238 0.0288 0.0363 0.0398 0.0223 0.0296 0.0350 0.0394

GoRec-VBPR 0.0171 0.0225 0.0272 0.0303 0.0218 0.0299 0.0340 0.0377 0.0229 0.0299 0.0346 0.0382
GoRec-VLGCN 0.0164 0.0221 0.0268 0.0300 0.0226 0.0294 0.0341 0.0383 0.0213 0.0293 0.0348 0.0390
GoRec-VSGCL 0.0272 0.0341 0.0391 0.0427 0.0308 0.0395 0.0459 0.0500 0.0290 0.0376 0.0439 0.0485

4.1.2 Evaluation Metrics. We select two metrics that are widely
used in personalized recommender systems: Recall (Recall@K) and
Normalized Discounted Cumulative Gain (NDCG@K).

4.1.3 Baselines. The baseline models can be divided into several
categories: (1) content-based methods, KNN [22], DUIF [7]. (2)
robustness-basedmethods, DropoutNet [28],MTPR [6]. (3) constraint-
based methods, Heater [45], CLCRec [33]. (4) generative methods,
GAR [3], CVAE.

• KNN [22] and DUIF [7] do not involve explicit alignments.
The former exploits content similarity and the latter learns
user preferences according to the item’s content features.

• DropoutNet [28] andMTPR [6] strategically discard partial
preference information in the training stage to simulate the
cold-start condition.

• Heater [45] and CLCRec [33] design explicit alignment
functions. The former uses the sum squared error loss to
align pre-trained preference representation and content rep-
resentation and the latter uses contrastive learning.

• GAR [3] trains a generator and a recommender adversarially,
making the cold representation that is similar to the old rep-
resentation. CVAE uses a naive CVAE model to reconstruct
pre-trained preference representations.

As GoRec can collaborate with any embedding-based recom-
mendation model and benefit from it, we select three representa-
tive recommendation backbones to implement GoRec. Specifically,
we adopt matrix factorization (VBPR [10]), graph learning (Light-
GCN [11] with multimedia features, denoted by VLGCN), and self-
supervised graph learning based (SimGCL [40] with multimedia fea-
tures, denoted by VSGCL) recommenders as backbones to achieve
pre-trained preference representations.

4.1.4 Hyper-Parameter Settings. We implement our GoRec and all
baselineswith Pytorch framework. The dimension of preference rep-
resentation is fixed as 64. The batch size is set to 256. The number of
layers of the MLP is set to 2. During training, we employ Adam [12]
as the optimizer and set the learning rate at 0.001, the early stop
strategy is employed to avoid over-fitting. For our GoRec model,
we turn the clustering number 𝑘 from 200 to 3000. Besides, we
carefully search the best parameter of 𝛼 and find GoRec achieves
the best performance when 𝛼 = 15 on Baby, 𝛼 = 5 on Clothing, and
𝛼 = 15 on Sports dataset. For all baselines, we search the parameters
carefully for fair comparisons. We repeat all experiments 5 times
and report the average results.

4.2 Overall Comparisons (RQ1)
As shown in Table 2, we compare our model with other baselines
on three datasets. We have the following observations:

• By reconstructing the preference representation from SOTA
recommendation methods, GoRec shows a significant im-
provement over all baselines. Specifically, GoRec-VSGCL im-
proves the strongest baseline 𝑤.𝑟 .𝑡 NDCG@20 by 51.26%,
29.39%, and 32.32% on Baby, Clothing, and Sports dataset,
respectively. Extensive empirical studies verify the effective-
ness of the proposed GoRec .

• With the exception of DUIF, all baseline models use the
same pre-trained representation as GoRec-VSGCL. We ob-
served that GoRec-VSGCL outperformed these baselines on
all three datasets. For example, compared with GAR and
Heater, GoRec-VSGCL improves𝑤.𝑟 .𝑡 NDCG@20 by 57.78%
and 111.24% on Baby dataset, respectively. This suggests that
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Figure 3: Ablation experiments.

Table 3: Running time (x in the brackets represents times).

Models Time(s) Epoch Total Time(s)
GoRec 0.7 27 18.9
GAR 1 4.6 (6.5x) 26 119.6 (6.3x)
DUIF 2 22.6 (32.2x) 41 926.6 (49.0x)
Heater 3 3.8 (5.4x) 15 57 (3.0x)
CLCRec 7.6 (10.8x) 7 53 (2.8x)
MTPR 4 110.1 (157.2x) 72 7927.2 (419.4x)

DropoutNet 5 4400 (6285.7x) 5 22000 (1164.0x)

GoRec can inherit preference information from pre-trained
representations better than others.

• The CVAE model in baseline uses naive CVAE to reconstruct
pre-trained preference representations. In many cases, naive
CVAE surpasses other new item recommendation methods.
This demonstrates the advantage of the framework that gen-
erates representations for new items by reconstructing pre-
trained representations. Meanwhile, compared with naive
CVAE, GoRec shows obvious improvement in all datasets,
which indicates that our novel design on CVAE is effective.

4.3 Ablation Study (RQ2)
To exploit the effectiveness of each component of the proposed
GoRec , we conduct the ablation study on different datasets. As
shown in Figure 3, we compare GoRec-VSGCL and correspond-
ing variants on Top-20 recommendation performance. GoRec-w/o
Cluster denotes that remove cluster-aware approach to obtain the
item’s fuzzy pre-trained representations and sample latent variable
according to prior net. GoRec-w/o Uniformity denotes that remove
the uniformity-enhanced optimization. From Figure 3, we observed
that each component of the GoRec contributed to the final supe-
rior performance. The cluster-aware approach and optimization of
uniformity of 𝜇 learn and locate more distinguishable latent space.

In addition, referring to [40], we plot latent variable distributions
with Gaussian kernel density estimation (KDE) in R2 and KDE on
anglesS1. As shown in Figure 4, we can observe that uniformity op-
timization results in a more uniform distribution of latent variable,
which make them more distinguishable.
1https://github.com/zfnWong/GAR
2https://github.com/duxy-me/MTPR
3https://github.com/Zziwei/Heater–Cold-Start-Recommendation
4https://github.com/duxy-me/MTPR
5https://github.com/layer6ai-labs/DropoutNet/tree/master/torch
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Figure 4: Uniformity of latent variable on Baby dataset.

4.4 Impact of Pre-trained Representations (RQ3)
As we introduced in methodology, our proposed GoRec can directly
benefit from the PPM. Comparing the performance of GoRec with
different pre-trained preference representations in Table 2, we can
observe the relationship between GoRec performance and the qual-
ity of pre-trained preference representations. With the improve-
ment of the performance of the pre-trained preference representa-
tions expression on the old item recommendation task, the perfor-
mance of the corresponding GoRec model on the new item recom-
mendation task also gradually improved.

Besides, we reconstruct item preference representations instead
of reconstructing historical interactions. This change in training
mode saves training resources. We demonstrate the advantage of
GoRec in running time through experiments. We report the real
running time that the compared methods cost for one epoch and the
total time that each model needs to achieve the best performance
on the Clothing dataset. The results in Table 3 are collected on
an Intel(R) Core(TM) i9-10900X CPU and a GTX TITAN X GPU.
We calculate how many times slower the other methods are when
compared with GoRec. Instead of reconstructing historical inter-
action records but reconstructing the preference representation,
GoRec has an absolute advantage in running time.

4.5 Hyper-Parameter Sensitivities (RQ4)
In this part, we analyze the impact of hyper-parameters in GoRec.
We exploit the effect of uniformity loss weight 𝛼 , mask ratio 𝜌 in
training, and cluster number 𝑘 .

Effect of Uniformity Loss Weights 𝛼 . As illustrated in Figure
5(a) and Figure 5(b), we carefully tune the uniformity loss weights 𝛼
on the Clothing and Sports datasets.We observe thatGoRec achieves
the best performance when 𝛼 = 15 on both the Clothing and Sports
datasets. The performance increases first and then stops increasing.
It indicates the latent space is already distinguishable and stronger
uniformity constraints can no longer provide valuable help.

Effect of Mask ratio 𝜌 . As introduced in the previous works,
we can mask part of content representations to enhance the gener-
alization ability of GoRec . From Figure 5(c) and Figure 5(d), we can
obverse that a proper mask ratio can improve model performance,
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Figure 5: Performance of different hyperparameters.

however, too high mask ratio lose too much valuable information,
resulting in a poor model effect.

Effect of Cluster Number 𝑘 . To investigate the effect of cluster
numbers, we set different cluster numbers in the new item recom-
mendation process. We illustrate the experimental results in Figure
5(e) and Figure 5(f). Experiments show that when the number of
clusters increases, we can provide more accurate information to
construct latent space and further improve performance. However,
when the number of clusters is too large, the fuzzy preference will
be more clear but may be inconsistent with the actual preference
of the new item, thus reducing the performance of the model, such
as the point represented by the pentagram in the figure.

5 RELATEDWORK
5.1 Cold-start Recommendation
Due to the different data distributions between warm and cold
items, recommendation models are hard to generate effective new
items representation. Existing cold-start methods can be broadly di-
vided into two categories, robustness-basedmethods, and enhanced-
based methods. Robustness-based methods randomly drop CF sig-
nals in the training stage to simulate the scenario of new item rec-
ommendation [6, 28]. For instance, DropoutNet [28] and MTPR [6]
strategically discard CF information during the training phase to
simulate the cold-start scenario. Enhanced-based methods use the

pre-trained representation to provide additional CF signals to en-
hance content representation. These methods dedicate to designing
various functions tomodel the correlation and narrow the difference
between CF information and content features [3, 26, 32, 33, 38, 45].
For example, Heater [45] extracts content representations and uses
the sum squared error loss to align pre-trained CF representations
and content representations. However, these methods focus on the
use of content features to express preferences and make insufficient
use of CF information. Besides, some multimedia recommendation
methods can alleviate the cold-start problem [19, 41]. Unlike our
problem scenario, these methods usually require that the content
information of a new item be available at the training stage in order
to model the correlation between items.

5.2 Applications of VAEs on Recommendation
Variational Auto-Encoder (VAE) is a generative method widely used
in machine learning [13, 21]. It assumes that the input data can be
generated from variables with some probability distribution. VAEs
are widely used in recommendation systems to reconstruct users’ in-
teractions with items. Mult-VAE [14] models user-item interactions
using multinomial distribution and parameterizes users with neural
networks. RecVAE [24] introduces a composite prior distribution for
the latent encoder. BiVAE [27] proposes bilateral inference models
to estimate the user-item and item-user distributions. CVGA [42]
combines GNNs and VAEs to reconstruct the user-item bipartite
graph using variance inference. CVAE is a variation of VAE that
can generate samples based on some specific conditions [25]. In
other words, it is a generative model that can condition its output
on additional information, such as class labels or other relevant side
information. CVAE is widely used in generative tasks in natural
language processing and computer vision [15, 29, 39, 43]. However,
there are few studies about the application of CVAE in recommender
systems.

6 CONCLUSION
In this paper, we focus on the recommendation for new items.
Different from the previous work, we propose modeling the item
preference distribution conditioned on multimedia content. Our
model is better able to inherit valuable information from preference
representations. And greatly save the cost of training. Specifically,
under the guidance of multimedia content features, we use a CVAE
model to reconstruct pre-trained preference representations and
generate preference representations for new items. Besides, we pro-
pose a novel uniformity-enhanced optimization to make different
latent spaces more distinguishable and keep their unique informa-
tion. Empirical studies on three public datasets clearly show the
effectiveness of the proposed framework.
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