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Abstract

Cognitive diagnosis is an important task in intelligence education, which aims at
measuring students’ proficiency on specific knowledge concepts. Given a fully
labeled exercise-concept matrix, most existing models focused on mining students’
response records for cognitive diagnosis. Despite their success, due to the huge
cost of labeling exercises, a more practical scenario is that limited exercises are
labeled with concepts. Performing cognitive diagnosis with limited exercise labels
is under-explored and remains pretty much open. In this paper, we propose Disen-
tanglement based Cognitive Diagnosis (DCD) to address the challenges of limited
exercise labels. Specifically, we utilize students’ response records to model student
proficiency, exercise difficulty and exercise label distribution. Then, we introduce
two novel modules - group-based disentanglement and limited-labeled alignment
modules - to disentangle the factors relevant to concepts and align them with real
limited labels. Particularly, we introduce the tree-like structure of concepts with
negligible cost for group-based disentangling, as concepts of different levels ex-
hibit different independence relationships. Extensive experiments on widely used
benchmarks demonstrate the superiority of our proposed model.

1 Introduction

In the field of intelligent education systems, cognitive diagnosis (CD) [25, 26] is a fundamental and
essential task, which aims at measuring students’ proficiency on specific knowledge concepts through
the student performance prediction process. CD can serve various applications, such as computerized
adaptive testing [2], targeted training [20], and exercise recommendation [24, 14]. We show a toy
example of CD in Fig. 1-(a). The exercise-concept matrix (known as Q-matrix) is labeled to indicate
which concepts are tested in each exercise. For example, concepts k3 and k5 are tested in exercise v3.
The CD model diagnosed that student u2 has a higher proficiency on the two concepts than that of u1

because u2 answered correctly on the exercise while u1 answered incorrectly. It’s obvious that fully
labeled Q-matrix plays an essential role in interpretability (i.e., diagnostic report) for CD models.

Most existing CD models focus on enhancing the mining process of response records to achieve
better diagnosis results. These models typically use a fully labeled Q-matrix that has been annotated
by domain experts to train their models. For example, the classical DINA model [8] assumes that
students must master all knowledge concepts associated with an exercise to answer it correctly,
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Figure 1: Example of cognitive diagnosis. (a) We show an example to demonstrate the CD process,
using a fully-labeled Q-matrix annotated by domain experts. (b) Tree-like structure of concepts is
easily annotated with negligible cost as the number of concepts is far fewer than that of exercises.

except in cases where the student guesses correctly. Representative neural-based CD models, such as
NCDM [38], KaNCD [39] and KSCD [30], explicitly model the explicit relationship between exercise
and knowledge concepts to constrain student proficiency during diagnostic processes. Despite the
success of these models, they share a common assumption that the knowledge concepts of each
exercise are fully labeled. However, the annotation of exercises is a labor-intensive task that requires
the expertise of professionals. There are always many exercises involved in intelligent education
systems, and the workload for annotation significantly increases with the number of exercises. Thus,
a more practical scenario is cognitive diagnosis with limited exercise labels.

Performing cognitive diagnosis using limited exercise labels is indeed an under-explored area in
current research. When faced with the few labeled exercise, a straightforward approach is to prefill the
Q-matrix in order to provide a complete Q-matrix as input to an existing CD model. One limitation
of this method is that its effectiveness largely depends on the accuracy of the pre-filling algorithm.
If the pre-filling algorithm fails to identify the knowledge concepts associated with each exercise
correctly, the resulting filled Q-matrix may be inaccurate or incomplete, which can negatively impact
the model’s diagnostic performance. Therefore, how to achieve interpretable diagnosis on specific
knowledge concepts with limited exercise labels remains a challenge.

In this work, we propose Disentanglement based Cognitive Diagnosis (DCD) to address the challenges
posed by limited exercise labels. Specifically, DCD is a semi-supervised disentanglement method to
model the students’ proficiency with limited exercise labels. To achieve this, we utilize historical
practice records to model student proficiency, exercise difficulty, and exercise relevance on each
knowledge concept. Then, we introduce two novel modules - the group-based disentanglement
module and the limited-labeled alignment module - to disentangle factors relevant to knowledge
concepts and align them with real limited exercise labels. Particularly, we introduce the tree-like
structure of concepts (shown in Fig. 1-(b)) for group-based disentangling, as concepts of different
levels exhibit different independence relationships. The knowledge concept tree reduces the workload
required for annotating knowledge concepts, as there are far fewer concepts than exercises to annotate.
These modules work together can deal with the limited exercise labels and diagnose the student’s
proficiency on each concept with interpretability. The main contributions of this work are summarized
as follows:

• Our work represents one of the few attempts to focus on the problem of limited exercise
labels in cognitive diagnosis, which is common in real-world practice.

• We propose a semi-supervised disentanglement approach to address the challenge of cogni-
tive diagnosis with limited exercise labels.

• We conduct extensive experiments under different few-labeled settings on three real-world
datasets, which demonstrates the effectiveness of our proposed DCD model.

2 Related Work

2.1 Cognitive Diagnosis in Intelligent Education Systems

The early CD works like IRT [10] and MIRT [35] focus on modeling students’ answering process by
predicting the probability of a student answering a question correctly, which utilizes latent factors as
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the student’s ability. IRT and MIRT are also known as Latent Factor Models (LFM). The obvious
limitation of the above models is the lack of interpretability, i.e., the inability to obtain an explicit
multidimensional diagnostic report on each knowledge concept. To achieve better interpretability,
later diagnostic models focus on incorporating knowledge concepts of exercises to diagnose students’
proficiency in all knowledge concepts [8, 38, 6, 47, 21]. Representative NCDM [38] adopts neural
networks to model non-linear interactions instead of handcrafted interaction functions in previous
works [10, 35]. However, researchers find that the free student proficiency vector learning paradigm
in NCDM is not capable of tackling weak-knowledge-coverage scenario and model relation among
knowledge concepts implicitly to address the problem [39, 30].

Cognitive Diagnosis in Few-labeled Scenarios. Most existing CD models are unable to directly deal
with the few-labeled scenarios, and assume that the exercises are fully labeled. NCDM+ [39] fills the
missing knowledge concepts by TextCNN [18] from the exercise’s text information, which regards
it as a previous task for CD. Therefore, the performance of CD lies in the accuracy of pre-filled
knowledge concepts. In this work, we focus on a more challenging scenario of missing exercise
textual information and infer missing knowledge concepts from response records only.

2.2 Disentangled Representation Learning

Disentangled Representation Learning (DRL) is an important learning paradigm that aims to disen-
tangle the underlying generative factors hidden in the observed data into the latent variables in the
representation [1]. One notable benefit attributed to DRL is its ability to extract latent factors that
embody semantic meanings, thus enhancing the interpretability of machine learning models. Both
VAE [19] and GAN [12] based DRL are widely adopted techniques. Considering that the training of
VAE is more stable than that of GAN [17, 45], in this work, we extend the VAE framework and focus
on learning interpretable disentangled representations to help cognitive diagnosis.

VAE-based Disentangled Representation Learning. β-VAE [13] modifies the Evidence Lower
Bound (ELBO) of VAE [19] by adding a hyperparamter β on KL term and find that a larger β
corresponds to the better disentanglement of latent code. However, the increasing β would also
lead to the worse reconstruction error dramatically [17, 36]. To analyze the trade-off between
reconstruction accuracy and the quality of disentangled representation, both FactorVAE [17] and β-
TCVAE [5] show that the success of β-VAE in learning disentangled representations can be attributed
to penalizing the Total Correlation (TC) term. β-TCVAE decomposes the expected KL term in ELBO
into index-code MI term, TC term, and dimension-wise KL term. The TC term would decrease the
mutual information among factors and improve independence among latent factors, which results in
better disentanglement. However, some researchers claim that the above unsupervised learning of
disentangled representations is fundamentally impossible without inductive biases as sometimes the
target dataset is not semantically clear and well-structured to be disentangled [27]. Hence, more works
focus on weak-supervised approaches [28, 37] and semi-supervised [29, 16]. A theoretical framework
is provided to assist in analyzing the disentanglement guarantees by weak supervision methods (e.g.
restricted labeling, match pairing, and rank pairing) [37]. Some researchers validate that with little
and imprecise supervision (e.g. manual labeling of factors) it is possible to reliably learn disentangled
representations [29]. In this work, we regard limited exercise labels as a semi-supervision to help
disentangle knowledge concepts-related factors.

Disentangled Representation Learning for User Modeling. User modeling [22] aims to capture
a number of attributes of each user, with the help of items, item features and/or user-item response
matrix [43], etc. DRL has a wide range of applications in user modeling to disentangle attributes.
For example, recommendation with several aspects of users’ interests [23, 31, 46, 40], fair user
representation to disentangle sensitive attributes [7, 34].

3 Problem Formulation

Let U = {u1, u2, . . . , uN}, V = {v1, v2, . . . , vM}, and K = {k1, k2, . . . , kK} denote the sets of
students, exercises, and knowledge concepts, respectively, where N , M , and K represent the size
of each set. The response records are denoted as X = {Xij}N×M , where Xij equals 1, 0 or -1
representing that the student answered the exercise correctly, incorrectly, or did not answer the
exercise, respectively. The relationship between exercises and knowledge concepts is represented by
the Q-matrix Q = {Qij}K×M . Typically, each exercise is related to multiple knowledge concepts.
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Qij equals 1 or 0 representing that exercise vj is related to the knowledge concept ki or not. In this
work, we explore the few-labeled situation, that is, there are only a few exercises that are labeled.
Thus, we split exercise set V into the labeled set V1 and the unlabeled set V2.

There are correlations and independence among different knowledge concepts. In our work, we
introduce the knowledge concept tree [41] to model their relations at different levels. By utilizing this
tree structure, we can effectively capture knowledge concepts’ interrelationships. For convenience,
we transform the knowledge concept tree into a standard tree (the height of all subtrees of any
node in the tree is equal). For more details about knowledge concept tree, please see Appendix C.
Suppose we construct a standard tree G with L levels, wherein its leaf nodes are denoted by the set
K = {k1, k2, . . . , kK}. Each level of knowledge concept can be regarded as a grouping of the last
level of knowledge concepts. The deeper the level, the finer the granularity of the grouping. Let
Gi = {Gi

1, G
i
2, . . . , G

i
|Gi|} denote grouping method of the i-th level knowledge concepts, where

i = 1, 2, . . . , L and
∣∣Gi+1

∣∣ ≥ ∣∣Gi
∣∣. Therefore, G1 = {G1

1 = K} and GL = {GL
1 = {k1}, GL

2 =

{k2}, . . . , GL
K = {kK}}.

Problem Definition. In an intelligent education system, given student set U , exercise set V = V1∪V2,
knowledge concepts K, response records X, knowledge concept tree G and incomplete Q-matrix, our
goal is to diagnose students’ cognitive states on knowledge concept set K with few-labeled exercises,
and predict the scores of students doing exercises.

4 The Proposed Model

In cognitive diagnosis, it is crucial to determine whether a student has the proficiency in knowledge
concepts required to answer an exercise correctly. This becomes even more challenging when there
are limited exercise labels available. To model students’ proficiency with few-labeled exercises, we
design disentanglement and alignment modules that can effectively utilize the weak supervision of a
few labeled exercises.

The overall framework of DCD is illustrated in Fig. 2, including input, encoder, disentanglement,
alignment, and decoder. The input of DCD contains the student-exercise interaction matrix X and
the few-labeled matrix Q. For diagnosing students’ cognitive states, we first utilize the encoder
module to model three important components from X: student proficiency, exercise difficulty, and
exercise relevance. Then, we leverage the group-based disentanglement module to separate the factors
related to knowledge concepts from the three components mentioned above. Next, the limited-labeled
alignment module associates each decoupled factor with a knowledge concept semantic with the
missing matrix Q. Finally, the decoder module predicts the scores based on the student proficiency,
exercise difficulty, and exercise relevance. Overall, DCD provides an effective approach for cognitive
diagnosis under limited exercise labels.

4.1 Encoder Module

The interaction matrix X provides valuable information regarding student proficiency, exercise
difficulty, and exercise relevance from different perspectives. Specifically, 1) From a student-centric
(row-wise) perspective, the response records of a student reflect his proficiency on all knowledge
concepts. 2) From an exercise-centric (column-wise) perspective, the response records of an exercise
reflect exercise difficulty and exercise relevance on all knowledge concepts. On the one hand,
to effectively model from two perspectives, we design the student proficiency encoder, exercise
difficulty encoder, and exercise relevance encoder modules. On the other hand, following existing
cognitive models, an interaction function (corresponding to our decoder) to predict the answering
result with student traits and exercise traits as input (corresponding to our encoders), which ensures
the interpretability of student proficiency representation. Traditional single encoder is not applicable
for cognitive diagnosis.

Student Encoder. The student encoder module is intended to infer student’s proficiency on each
knowledge concept from X, which models true posterior distribution p(zu|xu) by constructing
an inference network fϕu(xu) corresponding to approximate posterior distribution qϕu(zu|xu),
parameterized by ϕu. We assume student’s proficiency on all knowledge concepts zu follows a
multivariate standard Gaussian distribution prior, i.e., p(zu) ∼ N (0, I). The approximate posterior
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Figure 2: The overall framework of the proposed DCD. We first encode student proficiency, exercise
difficulty, and relevance vectors from students’ historical response records. Then, we devise two
novel modules ( i.e., the group-based disentanglement and the limited-labeled alignment modules) to
disentangle factors relevant to knowledge concepts and align them with real limited exercise labels.
Finally, the decoder module predicts the scores based on the student proficiency, exercise difficulty,
and exercise relevance.

for K-dimensional latent code zu ∈ RK is expressed as follows:

qϕu
(zu|xu) =

K∏
k=1

N (zu[k];µu[k],σu[k]), (1)

where µu ∈ RK and σu ∈ RK
>=0 are generated from student encoder fϕu(xu). The [·] indicates the

index selection operation.

Exercise Encoders. We design two encoders at exercise side: exercise difficulty and exercise
relevance encoders. The two encoders aim to infer exercise’s difficulty and exercise’s relevance on
each knowledge concept from X, respectively. For exercise difficulty encoder, we assume exercise’s
difficulty on all knowledge concepts zdv follows a multivariate standard Gaussian distribution prior
similar to the student encoder, i.e., p(zdv) ∼ N (0, I).

We assume exercise’s relevance on all knowledge concepts zrv follows a multivariate Bernoulli prior,
i.e. p(zrv) ∼ Bernoulli(p), where p is a hyperparameter. The exercise relevance encoder models
true posterior distribution p(zrv|xv) by constructing an inference network fϕr

v
(xv) corresponding to

approximate posterior distribution qϕr
v
(zrv|xv), parameterized by ϕr

v . The approximate posterior for
K-dimensional latent code zrv ∈ {0, 1}K is expressed as:

qϕr
v
(zrv|xv) =

K∏
k=1

Bernoulli(zrv[k];µ
r
v[k]), (2)

where µr
v ∈ [0, 1]

K are generated from exercise encoder fϕv (xv).

4.2 Group-based Disentanglement Module

The representations obtained by the encoder module do not relates to the knowledge concepts, which
makes it difficult to perform an accurate cognitive diagnosis. To address this issue, we assume the
entire response records as evolving from three groups of generative factors: student proficiency factors
on each knowledge concept, exercise difficulty factors on each knowledge concept, and exercise
relevance factors on each knowledge concept. We desire to disentangle these factors following
existing DRL methods.
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Inspired by the outstanding performance of β-TCVAE [5] in disentanglement, we introduce the
structure of β-TCVAE to obtain a better trade-off between the reconstruction accuracy and the quality
of disentangled representation. We find the index-code term of β-TCVAE plays a side effect on
performance and drop it during optimization like [32, 7]. Take student proficiency factors as an
example, the eventual Totoal Correlation (TC) constraint on zu can be expressed as follows:

Ld(zu) = DKL(q(zu)||
K∏
i=1

q(zu[i]), (3)

where q(zu) =
∑N

i=1 q(zu|xui
)p(xui

) is the aggregated posterior of zu. The TC term would
decrease the mutual information among latent factors and improve independence among latent factors.
The dimension-wise KL constraint on zu can be written as follows:

Lp(zu) =

K∑
i=1

DKL(q(zu[i])||p(zu[i])), (4)

where p(zu[i]) follows the prior standard Gaussian distribution. The dimension-wise KL term
prevents each latent variable from deviating too far from specified priors.

However, some CD works argue that the knowledge concepts are not independent and employ
relation among knowledge concepts to improve CD [11, 39]. The direct independence constraint
for each knowledge concept may be not applicable for cognitive diagnosis, which is also verified
in our experiment. To address the challenge, we propose to utilize the easy-labeled knowledge
concept tree to capture underlying independence among knowledge concepts. We assume there is less
independence among groups of knowledge concepts grouped by their parent nodes in the knowledge
concept tree. Corresponding to the real world, knowledge concepts in the same chapter would be
related more than knowledge concepts in different chapters. Therefore, each level concept in the tree
is a kind of grouping method for the last level concepts. The deeper the level, the finer the granularity
of the grouping. Considering the grouping methods at the i-th level, the Eq. (3) can be rewritten as
follows:

Li
d(zu) = DKL(q(zu)||

|Gi|∏
j=1

q(zu[G
i
j ])), (5)

where Gi
j is the knowledge concepts that belong to j-th group according to the grouping method of

i-th level in the tree. The Eq. (5) allows dependence in intra-group knowledge concepts and maintains
independence among inter-group knowledge concepts.

4.3 Limited-Labeled Alignment Module

After applying the group-based disentanglement module, it is important to correspond each latent
factor with an actual knowledge concept to ensure the interpretability. However, there are only
a few labeled exercises with knowledge concepts, making it challenging to perform the accurate
alignment. Inspired by semi-supervised DRL, to address this issue, we devised an alignment module
that aligns both few labeled and numerous unlabeled exercises separately. For convenience, we use
qj ∈ {0, 1}K to denote j-th column of matrix Q corresponding to exercise vj that belongs to V1.

Few Labeled Exercises. For an exercise vj ∈ V1, we utilize the Mean Square Error (MSE) loss to
constraint similarity between qj and µr

vj , which can be defined as follows:

Ll =
∑

vj∈V1

∥qj − µr
vj∥

2
2, (6)

where V1 means labeled exercise set. For semi-supervised DRL in the vision field, it’s usually
enough with a single alignment module for a few labeled samples. However, for cognitive diagnosis,
the annotation vector (i.e., the column of Q-matrix) of exercise is very sparse with only one or
two knowledge concepts per exercise. The challenge is that utilizing a few labeled exercises to do
alignment is too hard to keep such sparsity in relevance representation for unlabeled exercises. To
this end, the alignment of unlabeled exercises is necessary.

Numerous Unlabeled Exercises. For an exercise vj ∈ V2, we have no idea any knowledge concept
of it. But we know there are only a few knowledge concepts of each exercise. The feature of sparsity
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in µr
vj would help infer missing knowledge concepts. We just need to guarantee that there are only a

few elements to be one and other elements to be zero in µr
vj . In this work, we employ a margin loss

and an L2 loss to achieve this target, which can be expressed as follows:

Lul =
∑

vj∈V2

(λ1max(0,m− (µr
vj [max#d1]− µr

vj [max@(d1 + d2 + 1)])) + λ2∥µr
vj∥

2
2), (7)

where m is the margin, λ1 is the hyperparameter to control margin loss, and λ2 is the hyperparameter
to control L2 loss. We use µr

v[max@k] and µr
v[max#k] to denote the k-th largest element of µr

v
and the top k largest elements of µr

v, respectively. In Eq. (7), we first sort µr
vj by descending order

and then split the sorted one into three parts of length d1, d2,K − d1 − d2. We argue that knowledge
concepts in the last part are the least likely to be the ground-truth knowledge concepts of exercise vj
and knowledge concepts in the first part are the most likely to be the ground-truth knowledge concepts
of exercise vj . Therefore, we adopt a margin loss between knowledge concepts in the first part and
knowledge concepts in the last part, which requires that all values in the first part (i.e., µr

vj [max#d1])
is at least m greater than the largest value in the last one (i.e., µr

vj [max@(d1 + d2 + 1)]). For the
middle part, we do not constrain anything on it. Intuitively, it’s reasonable that adopt an L1 loss to
constraint the value in the last part (i.e., µr

vj [min#(K − d1 − d2)]) to be 0. In our initial attempt,
we first directly try to use L1 loss for numerous unlabeled exercises, and we find it does not show
competing performance (detailed in Appendix A.3). We speculate a possible reason is as follows:
with L1 loss, after model initialization, it is very hard to revise these incorrectly labeled exercises.
In contrast, L2 loss are sensitive to outliers, and would have a larger loss when the corresponding
knowledge is incorrectly predicted.

4.4 Decoder Module

After aligning the exercise relevance representation with the real knowledge concepts, the decoder
module predicts scores of students doing exercises, which could be described as a triplet set T =
{(ui, vj , Xij)|Xij ̸= −1}. The object function can be described as follows:

Lm = −Eqϕu (zu|xu),qϕd
v
(zd

v|xv),qϕr
v
(zr

v|xv)[log p(X|zu, zdv, zrv)]

=
∑

(ui,vj ,Xij)∈T

BCE(σ((zui
− zdvj )⊗ zrvj ), Xij),

(8)

where BCE(·, ·) is the binary cross entropy loss function, ⊗ and σ(·) denote inner product operation
and sigmoid function, respectively.

Similar to existing CD works [38, 39, 21], the interaction function (i.e., the decoder) keeps the
monotonicity assumption [39], which guarantees the interpretability of student proficiency represen-
tation (i.e., the higher the value of the latent factor means the better proficiency on the corresponding
knowledge concept, detailed in Appendix A.4). In addition, the element-wise operation in the decoder
module propagates the alignment (i.e., each latent factor corresponds to each real knowledge concept)
on exercise relevance representation to both student proficiency representation and exercise difficulty
representation, which is also the same as existing works.

Optimization. We summarized all object functions in all modules and combine them for final
optimization. We set different hyperparameters to balance each loss function. The final object
function can be summarized as follow:

argmin
Θ=[ϕu,ϕd

v,ϕ
r
v ]

L = Lm + αLl + Lul +

L∑
i=1

(βi
∑

z∈{zu,zd
v,z

r
v}

Li
d(z)) +

∑
z∈{zu,zd

v,z
r
v}

Lp(z), (9)

where Θ = [ϕu, ϕ
d
v, ϕ

r
v] is the parameter set in the whole model, α is the hyperparameter for

alignment of labeled exercises, and βi denotes the weight for disentanglement term corresponding to
the i-th level in the knowledge concept tree.
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5 Experiments

5.1 Experimental Settings

Datasets. Our experiments are conducted on three real-world datasets, i.e., Matmat2, Junyi [4] and
NIPS2020EC [42], all of which contain knowledge concepts of the tree structure. The statistics of
these datasets are summarized in Table 1. We adopt five-fold cross-validation to avoid randomness.
The details about datasets and implementation3 are depicted in the Appendix B.

Table 1: The statistics of three datasets.

dataset #students #exercises #concepts
at different level

#leaf concepts
per exercise

#right records :
#error records sparsity

Matmat 7,067 1,847 [1,5,11] 1.00 5.50 97.7%
Junyi 8,852 720 [1,8,39] 1.00 2.16 87.4%
NIPS2020EC 11,857 6,509 [1,4,29,64] 1.05 2.00 99.1%

Metrics. To evaluate the effectiveness of DCD in terms of score prediction and interpretability, we
adopt three widely used prediction metrics: AUC [3], ACC, RMSE, and one interpretability metric:
Degree of Agreement (DOA) [38]. DOA is the most commonly used interpretability metric in the
CD, which measures the degree of agreement between cognitive results and response records.

Baselines. The baselines including the classical data mining model Probabilistic Matrix Factorization
(PMF) [33], the latent factor models IRT [10], MIRT [35], and the representative CD models DINA [8],
NCDM [38], KaNCD [39] and KSCD [30]. In addition, we also explore a simplified version of our
method. Specifically, we remove the exercise difficulty module and margin loss, and focus solely
on the fine-grained disentanglement module. This simplified version serves as a baseline, which we
refer to as β-TCVAE in the following analysis.

Existing non-interpretable models such as PMF, IRT, and MIRT cannot obtain a student’s proficiency
for each knowledge concept [38]. Consequently, DOA cannot be calculated for these models.
Interpretable models such as DINA, NCDM, KaNCD, and KSCD cannot directly apply to few-
labeled scenarios. To ensure fairness in comparison, we propose a pre-filling algorithm (detailed in
Appendix B.2) for the missing Q-matrix before applying these models.

5.2 Performance Comparison

To evaluate the effectiveness of our proposed DCD model in few-labeled scenarios, we have conducted
experiments on datasets with 10% Q-matirx (few-labeled exercises), 20% Q-matirx (few-labeled
exercises) and 100% Q-matirx (fully-labeled exercises). The detailed performance comparison on
three datasets is displayed in Table 2.

Prediction Comparison. 1) Our proposed model consistently outperforms all interpretable baseline
models across the different scenarios, demonstrating its effectiveness. DINA, which only considers
binary space, performs the worst. Both KSCD and KaNCD implicitly model relation among knowl-
edge concepts and has a better performance than NCDM. 2) However, all non-interpretable models
achieve the best prediction metrics over interpretable models on Junyi and NIPS2020EC datasets
except Matmat dataset. This may be because there are far fewer knowledge concepts in the Matmat
dataset than in the other two datasets. To meet the interpretability of larger knowledge concept space,
interpretable models lose partial prediction accuracy. This explanation is supported by the fact that
the prediction results of interpretable models show a noticeable improvement in the few-labeled
scenario compared to the fully labeled scenario, indicating that the trade-off between interpretability
and accuracy is more significant in a larger knowledge concept space.

Interpretability Comparison. 1) Table 2 demonstrates that our method achieves the best inter-
pretability in all scenarios. Especially, for the 10% and 20% Q-matrix (few-labeled scenarios), our
model significantly outperforms interpretable baselines in terms of DOA, demonstrating its superior
interpretability in this scenario. 2) In few-labeled scenarios, KaNCD and KSCD show a remarkable
improvement in DOA compared to DINA and NCDM. This is because DINA and NCDM can only

2https://github.com/adaptive-learning/matmat-web
3Our code is available at https://github.com/kervias/DCD
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Table 2: Comparison in both fully-labeled and few-labeled scenarios. We divide models into non-
interpretable and interpretable models. The best scores are in bold for two kinds of models. Noted
that non-interpretable models keep same results in any scenario as they do not utilize Q-matrix.

Model 100% Q-matrix (fully-labeled) 20% Q-matrix (few-labeled) 10% Q-matrix (few-labeled)
AUC↑ ACC↑ RMSE↓ DOA↑ AUC↑ ACC↑ RMSE↓ DOA↑ AUC↑ ACC↑ RMSE↓ DOA↑

Matmat

PMF 0.759 0.857 0.334 - 0.759 0.857 0.334 - 0.759 0.857 0.334 -
IRT 0.747 0.851 0.339 - 0.747 0.851 0.339 - 0.747 0.851 0.339 -

MIRT 0.750 0.853 0.337 - 0.750 0.853 0.337 - 0.750 0.853 0.337 -
DINA 0.696 0.816 0.368 0.828 0.698 0.774 0.380 0.766 0.700 0.770 0.372 0.735

NCDM 0.742 0.839 0.348 0.850 0.738 0.837 0.350 0.781 0.740 0.846 0.346 0.738
β-TCVAE 0.753 0.847 0.337 0.847 0.733 0.843 0.342 0.743 0.730 0.842 0.343 0.733

KSCD 0.753 0.824 0.348 0.833 0.745 0.828 0.348 0.789 0.744 0.838 0.345 0.769
KaNCD 0.760 0.857 0.335 0.860 0.752 0.852 0.338 0.800 0.751 0.852 0.338 0.783

DCD 0.763 0.857 0.334 0.861 0.767 0.857 0.333 0.819 0.764 0.855 0.334 0.796

Junyi

PMF 0.817 0.776 0.394 - 0.817 0.776 0.394 - 0.817 0.776 0.394 -
IRT 0.822 0.779 0.391 - 0.822 0.779 0.391 - 0.822 0.779 0.391 -

MIRT 0.820 0.777 0.392 - 0.820 0.777 0.392 - 0.820 0.777 0.392 -
DINA 0.737 0.684 0.462 0.862 0.748 0.658 0.459 0.638 0.754 0.663 0.456 0.599

NCDM 0.760 0.715 0.445 0.851 0.791 0.743 0.418 0.632 0.804 0.753 0.409 0.594
β-TCVAE 0.770 0.732 0.423 0.827 0.803 0.764 0.406 0.699 0.805 0.763 0.407 0.673

KSCD 0.767 0.725 0.426 0.809 0.804 0.754 0.409 0.670 0.809 0.760 0.405 0.650
KaNCD 0.775 0.754 0.422 0.835 0.807 0.767 0.400 0.719 0.815 0.773 0.395 0.691

DCD 0.787 0.754 0.414 0.873 0.811 0.768 0.400 0.733 0.814 0.771 0.397 0.717

NIPS2020EC

PMF 0.814 0.760 0.407 - 0.814 0.760 0.407 - 0.814 0.760 0.407 -
IRT 0.819 0.762 0.402 - 0.819 0.762 0.402 - 0.819 0.762 0.402 -

MIRT 0.822 0.765 0.400 - 0.822 0.765 0.400 - 0.822 0.765 0.400 -
DINA 0.764 0.705 0.451 0.856 0.767 0.687 0.453 0.740 0.766 0.684 0.453 0.693

NCDM 0.795 0.730 0.423 0.853 0.803 0.751 0.411 0.736 0.805 0.750 0.411 0.687
β-TCVAE 0.792 0.744 0.417 0.854 0.797 0.740 0.416 0.781 0.801 0.745 0.413 0.774

KSCD 0.798 0.716 0.421 0.830 0.809 0.754 0.410 0.787 0.809 0.755 0.410 0.777
KaNCD 0.797 0.750 0.423 0.856 0.811 0.759 0.403 0.783 0.812 0.760 0.404 0.761

DCD 0.801 0.752 0.415 0.861 0.812 0.761 0.405 0.793 0.813 0.762 0.404 0.786

diagnose knowledge concepts labeled in the training set. When incorrect knowledge concepts are
filled in, KaNCD and KSCD are less affected, while DINA and NCDM cannot accurately diagnose
the true knowledge concepts. In contrast, our model avoids this issue by modeling the distribution of
students’ proficiency overall knowledge concepts.

5.3 Disentanglement Analysis

To investigate the effectiveness of disentanglement, we conducted an experiment where we compared
our method at different disentanglement weights β in the few-labeled scenario. Fig. 3 (a-d) illustrates
the results, the x-axis shows the value of β from 0 to 2, which corresponds to the strength of
disentanglement. The AUC is displayed on the left y-axis and the DOA is displayed on the right
y-axis. The AUC(i) and DOA(i) denote the results by disentanglement only according to i-th level
of knowledge concept tree. There are some observations from Fig. 3: 1). The disentanglement
according to the last level of tree (i.e., the most fine-grained disentanglement) can not have an
improvement in terms of DOA as the rise of β. The phenomenon is consistent with the assumption
that knowledge concepts are correlated. Despite there being an improvement in AUC, we assume it’s
the result of interpretability losses, as mentioned in the prediction comparison in section 5.2. 2) The
coarse-grained disentanglement could simultaneously improve the AUC and DOA compared to no
disentanglement. We observe that the performance increased initially with the implementation of
disentanglement and then decreased as the strength of disentanglement became excessive, leading to
counterproductivity.

5.4 Alignment Analysis

To evaluate the effectiveness of the limited-labeled alignment module, we conducted an experiment
with different hyperparameters on Junyi dataset with 10% Q-matrix, namely α, λ1, λ2 and d2, as
shown in Fig. 3 (e-h). Due to the number of leaf concepts per exercise being close to 1 for all datasets,
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Figure 3: AUC and DOA results of DCD with hyper-parameters in the group-based disentanglement
(a-d) and limited-labeled alignment (e-h) modules.

we set the d1 = 1 as the default value. The default margin is 0.5. There are some observations:
1) α is the weight of the alignment loss corresponding to labeled exercises. Fig. 3 (e) shows that
the performance of our model initially improves and eventually stabilizes as α increases. 2) λ1 is
the weight of margin loss for unlabeled exercises. As illustrated in Fig. 3 (f), the employment of
margin loss is effective according to results from zero to non-zero of λ1. The excessive λ1 would
decrease the performance. 3) λ2 is the weight of L2 loss of unlabeled exercises exercise relevance
representation. We can observe that the employment of the L2 loss plays an essential role from
Fig. 3 (g). 4) We can observe that the employment of d2 is effective from Fig. 3 (h). As d2 increases
from 0 to 8, the performance increases first and then drops. Overall, the limited-labeled alignment
module has a positive effect on performance, and the hyperparameters of the alignment module need
to be certainly adjusted.

5.5 Ablation Study

Table 3: Ablation study of DCD on Junyi.
Model 10% Q-matrix(few-labeled)

AUC↑ ACC↑ RMSE↓ DOA↑
DCD w/o Alignment-Margin 0.8140 0.7692 0.3976 0.7136
DCD w/o Alignment-L2 loss 0.8101 0.7681 0.3977 0.6322
DCD w/o Disentanglement 0.8130 0.7682 0.3983 0.7134

DCD 0.8143 0.7713 0.3965 0.7174

As shown in Table 3, to prove the effectiveness
of our proposed disentanglement and alignment
modules, we conduct the ablation study on Junyi
dataset under the 10% Q-matrix scenario. The
margin Loss in alignment module ensures few
elements to be one in exercise relevance repre-
sentation, which achieves an improvement of 0.53% in terms of DOA. The L2 loss in alignment
module ensures the sparsity of exercise relevance representation, which achieves an improvement of
13.48% in terms of DOA. It proves that utilizing a few labeled exercises to do alignment is too hard to
keep such sparsity in relevance representation for unlabeled exercises. The disentanglement module
alone achieves 0.56% in terms of DOA. Overall, both the proposed disentanglement and alignment
modules achieve an improvement in terms of prediction and interpretability metrics.

6 Conclusion

In this paper, we present a novel approach, called DCD, to tackle the interpretability problem
of cognitive diagnosis with limited exercise labels. Inspired by semi-supervised DRL, we learn
disentangled representations and align them with real limited labels by group-based disentanglement
and limited-labeled alignment. Extensive experiments on widely used benchmarks demonstrate the
superiority of our proposed method in few-labeled scenarios.
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A Additional Experiments

A.1 Comparison on Inferring Missing Knowledge Concepts

To evaluate the degree of alignment from exercises’ relevance, we adopt Hit Ratio (HR) [44] to
measure whether the top-k ranked elements in exercise relevance representation hit a ground-truth
knowledge concept. The algorithm about filling missing Q-matrix for baselines (detailed in Appendix
B.2) is compared with our exercise relevance encoder. The filling results of HR@2 is illustrated in
Table 4. We can observe that: 1) It’s rational that inferring missing knowledge concepts according to
response records of exercises. The filling algorithm and our method show a obvious improvement
than randomly assigning knowledge concepts for unlabeled exercises. 2) Our method demonstrates
the best HR@2 on Matmat dataset, but shows a worse performance on other datasets. This is because
the number of knowledge concepts in Matmat has a smaller scale than other datasets and our model
has a better inferring performance in small scale knowledge concepts. Despite the worse filling
results than filling algorithm for baselines, our method still shows the best performance in prediction
metrics and interpretable metrics, which demonstrate the robustness of the proposed DCD approach.
This may be attributed to the inference of student proficiency of our student encoder module.

Table 4: HR@2 comparison on inferring missing knowledge concepts
Matmat Junyi NIPS2020EC

20% Q-matrix 10% Q-matrix 20% Q-matrix 10% Q-matrix 20% Q-matrix 10% Q-matrix
Random 0.1818 0.1818 0.0513 0.0513 0.0313 0.0313
Filling Algorithm 0.6876 0.6006 0.2483 0.2382 0.5864 0.4548
DCD 0.9292 0.8693 0.2892 0.1898 0.4943 0.3849

A.2 Experiments under other few-labeled scenarios

We conduct experiments evaluating other missing ratios of the Q-matrix on the NIPS2020EC dataset.
In Table 2 of the main body, we illustrated the results under 100%, 20% and 10% settings. Here we
additionally add experiments on 50%, 30%, and 5% Q-matrix scenarios, which are illustrated in 5.
The experimental results demonstrate our DCD outperforms all the interpretable baseline models in
these few-labeled scenarios. Besides, as the preserved ratio of the Q-matrix decreases (from 50%
to 5%), our DCD demonstrates a greater improvement (from 0.86% to 1.43%) compared to the
second-ranked model in terms of DOA. This shows the advantage of DCD in label-scarce scenarios.

Table 5: Comparison in other few-labeled scenarios on NIPS2020EC dataset. We divide models
into non-interpretable and interpretable models. The best scores are in bold for two kinds of models.
Noted that non-interpretable models keep same results in any scenario as they do not utilize Q-matrix.

Model 50% Q-matrix (few-labeled) 30% Q-matrix (few-labeled) 5% Q-matrix (few-labeled)
AUC↑ ACC↑ RMSE↓ DOA↑ AUC↑ ACC↑ RMSE↓ DOA↑ AUC↑ ACC↑ RMSE↓ DOA↑

NIPS2020EC

PMF 0.814 0.760 0.407 - 0.814 0.760 0.407 - 0.814 0.760 0.407 -
IRT 0.819 0.762 0.402 - 0.819 0.762 0.402 - 0.819 0.762 0.402 -

MIRT 0.822 0.765 0.400 - 0.822 0.765 0.400 - 0.822 0.765 0.400 -
DINA 0.766 0.692 0.456 0.807 0.766 0.685 0.455 0.769 0.765 0.675 0.454 0.649

NCDM 0.799 0.739 0.415 0.802 0.801 0.743 0.414 0.765 0.800 0.742 0.414 0.644
β-TCVAE 0.794 0.746 0.416 0.808 0.795 0.748 0.412 0.790 0.801 0.747 0.415 0.770

KSCD 0.800 0.744 0.417 0.800 0.803 0.750 0.413 0.791 0.805 0.752 0.411 0.769
KaNCD 0.807 0.754 0.411 0.810 0.809 0.759 0.406 0.792 0.812 0.761 0.404 0.752

DCD 0.809 0.759 0.407 0.817 0.811 0.760 0.405 0.800 0.814 0.763 0.403 0.781

A.3 Comparison between L1 and L2 loss for unlabeled exercises in alignment module

In section 4.3, we finally adopt the L2 loss to constraint the exercise relevance representation sparsity
of unlabeled exercises. Intuitively, it’s reasonable that adopt an L1 loss to constraint the value in
the last part (i.e., µr

vj
[min#(K − d1 − d2)]) to be 0. As shown in 6, in our initial attempt, we first

directly try to use L1 loss for numerous unlabeled exercises, and we find it does not show competing
performance. We speculate a possible reason is as follows: with L1 loss, after model initialization, it
is very hard to revise these incorrectly labeled exercises. In contrast, L2 loss are sensitive to outliers,
and would have a larger loss when the corresponding knowledge is incorrectly inferred.
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Table 6: Comparison between L1 and L2 loss of alignment in 10% Q-matrix scenario on three
datasets.

Model Matmat JunYi NIPS2020EC
AUC↑ ACC↑ RMSE↓ DOA↑ AUC↑ ACC↑ RMSE↓ DOA↑ AUC↑ ACC↑ RMSE↓ DOA↑

DCD with L1 0.747 0.851 0.340 0.777 0.811 0.770 0.398 0.634 0.810 0.758 0.406 0.722
DCD with L2 0.764 0.855 0.334 0.796 0.814 0.771 0.397 0.717 0.813 0.762 0.404 0.786

A.4 Monotonicity Analysis
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Figure 4: Example of variation of one factor in
student proficiency representation. We randomly
select a student and three knowledge concepts.

The monotonicity assumption [38, 39] in CD
works means that the probability of correct re-
sponse to the exercise is monotonically increas-
ing at any dimension of the student’s knowledge
proficiency, which guarantees the interpretabil-
ity of student proficiency representation (i.e., the
higher the value of the latent factor means the
better proficiency on the corresponding knowl-
edge concept). Given a student proficiency rep-
resentation, each dimension in the representa-
tion corresponds to the student’s proficiency
level on a specific knowledge concept. When
we only increase the value of a single dimen-
sion in the student representation (improving
the student’s proficiency on a specific knowl-
edge concept), while keeping the exercise diffi-
culty representation and relevance representation unchanged, the student’s probability of answering
questions related to that knowledge concept correctly will increase, while the probability of answer-
ing questions unrelated to that knowledge concept will remain unchanged. In Fig. 6, we present a
case where we only increase a single dimension in the student representation, and it shows that the
student’s probability of answering questions related to that knowledge concept correctly increases.

A.5 Nemenyi Test

The Nemenyi test [9] is conducted to present the comparison between our proposed DCD and the
interpretable baselines for all 5-fold cross-validation results. A significant difference is regarded to
exist in the Nemenyi tests if the average ranks of two models differ by at least one crucial difference,
which is determined using a 5% significance level. The model metric improves as the ranking score
decreases. As illustrated in Fig 5, Fig 6 and Fig 7, which demonstrates the comparison on 100%,
20% and 10% labeled exercises scenario, respectively. It’s obvious that our proposed DCD approach
performs best for all metrics in any scenario.
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Figure 5: Nemenyi tests for comparison on 100% labeled exercises scenario
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Figure 6: Nemenyi tests for comparison on 20% labeled exercises scenario
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Figure 7: Nemenyi tests for comparison on 10% labeled exercises scenario

B Experimental Details

B.1 Reparameterization Trick

In the student encoder module, student proficiency representation zu is sampled from a Gaussian
distribution N (µu,σu). If we sample zu from N (µu,σu) directly, we will lost gradient information
as the sampling process is not differentiable. Fortunately, any Gaussian distribution can transform
to a standard Gaussian distribution. we can sample a ϵ ∼ N (0, I) that has nothing to do with any
parameters. By doing so, zu is equal to µu+σu⊙ϵ, where ⊙ means element-wise product. However,
there is no similar property of Bernoulli distribution corresponding to exercise relevance encoder. In
this work, we adopt gumbel-softmax reparameterization [15] to alleviate this problem, which is one
of the gradient estimator methods.

B.2 Algorithm for Filling Missing Q-matrix

Existing interpretable baselines cannot directly apply to few-labeled scenarios. We design a filling
method by employing similarity of response records in exercise to infer missing knowledge concepts.
The detailed procedure is shown in Algorithm 1. We first compute the similarity (detailed in Eq. (10))
among exercises according to response records of exercise. Then for each unlabeled exercise, we
vote the votek most frequently occurring knowledge concepts among the most similar exerk labeled
exercises as the filling knowledge concepts. We set votek = 2 and exerk = 5 as default.

Si,j =

∑
un∈U I(Xni ·Xnj == 1)∑

un∈U I(Xnj ̸= 0)
, (10)

where Si,j denotes the similarity between exercise vi and vj . I(condition) = 1 if condition is True,
and vice versa I(condition) = 0. X is the interaction matrix in training set. Xni = 1,−1 represent
student un answered exercise vi correctly and incorrectly, respectively. Xni = 0 represents student
un did not answer exercise vi. U is the student set.

Algorithm 1 Filling Missing Q-matrix for Interpretable Baselines
Input: labeled exercises set V1, unlabeled exercises set V2, interaction matrix X in training set,

missing Q-matrix Q, number of similar exercises exerk, number of filling knowledge concepts
votek

Output: Filling Q-matrix Q
1: M = |V1

⋃
V2|

2: Initialize exercise similarity matrix S of size (M , M ) with the default value −∞
3: for all exercise vi ∈ V1 do
4: for all exercise vj ∈ V2 do
5: Calculate Si,j according to Eq. (10)
6: end for
7: end for
8: for all exercise vj ∈ V2 do
9: se = the most similar exerk labeled exercises of vj according to S[:, j]

10: sk = the votek knowledge concepts with the highest frequency of occurrence in se
11: Set corresponding elements to be one in Q[j, :] by sk
12: end for
13: return Q
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B.3 Datasets and Preprocessing

Our experiments are conducted on three real-world datasets, i.e., Matmat4, Junyi5 [4] and
NIPS2020EC6 [42], all of which contain knowledge concepts of the tree structure. For all datasets, we
preserve the first-time exercise-answering record for same student-exercise pairs to support cognitive
diagnosis. The detailed information on datasets and preprocessing method are depicted as following:

• Matmat. This dataset is collected from an intelligent web application for practicing mathe-
matics called Matmat7, which includes three-level knowledge concept structure after prepro-
cessing. The first-level knowledge concept is the root node called math. The second-level
knowledge concepts are organized as 5 calculational types including addition, multiplication,
division and so on. The third-level knowledge concepts are organized by calculational
scale.We preserve students with more than 15 response records to guarantee that each
student has enough data for diagnosis.

• Junyi. This dataset is collected from an online educational platform called Junyi Academy8.
There are three-level knowledge concept structure in this dataset. Besides the first-level root
node, we apply area and topic field in origin dataset to denote the second-level and third-level
knowledge concept ,respectively. We preserve students with more than 50 response records
to guarantee that each student has enough data for diagnosis.

• NIPS2020EC. This dataset is originated from NeurIPS 2020 Education Challenge [42],
which provides students’ answers to mathematics questions from Eedi9. There are four-level
knowledge concept structure in this dataset. We sample a subset from the task 1 of this
competition by selecting response records during March 2020. We preserve students with
more than 30 response records to guarantee that each student has enough data for diagnosis.

B.4 Implementation Details

We train our model with Python 3.9 and PyTorch 1.12.1 on NVIDIA RTX A5000. The student and
exercise encoders are implemented by a multilayer perceptron for all datasets. We set a prior Gaussian
distribution with N (0, 1) for each latent factor in µu and µd

v , and a prior Bernoulli distribution with
Bernoulli(0.2) for each latent factor in µr

v. For all interpretable models, we select the epoch with
the best DOA for testing and almost set Adam as the default optimizer. The implement of DOA [38]
metric is adopted from EduCDM10. For more implementation details, please see our public code
repository https://github.com/kervias/DCD.

C Knowledge Concept Tree

C.1 Standard Knowledge Concept Tree

The employment of knowledge concept tree in our work is to obtain group based disentanglement
according to granularity at different levels. For convenience, we transform the initial knowledge
concept tree into a standard tree, which is defined as the tree that the height of all subtrees of any
node in the tree is equal in our work. The transformation process is displayed in Fig. 8. For those leaf
nodes whose depth has not reached the depth of the tree, we can continuously duplicate this node
through inheritance until reaching the depth of the tree.

C.2 Example of Real Knowledge Concept Tree

In this work, we assume that there is less independence among groups of knowledge concepts
grouped by their parent nodes in the knowledge concept tree. This viewpoint is inspired by practical
applications, and the analysis is as follows. To better clarify the argument, we provide the partial

4https://github.com/adaptive-learning/matmat-web
5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
6https://eedi.com/projects/neurips-education-challenge
7https://matmat.cz/
8https://www.junyiacademy.org/
9https://eedi.com/

10https://github.com/bigdata-ustc/EduCDM/
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Figure 8: Process of transforming non-standard knowledge concept tree structure into standard tree.

knowledge concept tree of NIPS2020EC dataset in Fig. 9. Firstly, the course chapter hierarchy is a
typical example of concepts with a tree structure. Intuitively, the associations among concepts at the
high level of the hierarchy are weaker compared to the associations between concepts at the low level.
For example, if we adopt the 2nd level concepts (i.e., algebra, data and statistics, ...) to group the
last level concepts, the independence among groups is higher than the groups determined by the 3rd
level concepts (i.e., inequalities, formula, data collection, ...). Moreover, there is a higher likelihood
that concepts within the same chapter are simultaneously assessed in the same exercise. For instance,
the concepts whose parent concept is inequalities would have a higher probability occur in the same
exercise. However, the solving linear inequalities concept whose parent concept is inequalities and
the tally charts concept whose parent concept is data collection would have a lower probability occur
in the same exercise.

Figure 9: An example of a four-level knowledge concept tree on NIPS2020EC dataset. Here
we only provide details of the hierarchical structure of NIPS2020EC→Algebra→Inequalities and
NIPS2020EC→Algebra→Data and Statistics→Data Collection.

D Limitations

There are still some limitations of our proposed method. 1) The latent factors considered in our
method are only related to knowledge concepts. However, the student answering process may refer
to more factors that are not related to knowledge concepts such as the family economic conditions
of students and reading comprehension difficulty of exercise textual information, which results in
the incomplete and insufficient disentanglement in our proposed method. The following work we
consider is to introduce more side information to help disentangle other factors. 2) The assumption
that inter-group knowledge concepts are independent may be too strong. The later work we consider
is to model causal relation among knowledge concepts for disentanglement. 3) The alignment module
for unlabeled exercises is just to keep sparsity. In the future, we will introduce explicit relation among
knowledge concepts to help infer missing knowledge concepts.
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