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ABSTRACT 
Collaborative fltering based recommendation learns users’ prefer-
ences from all users’ historical behavior data, and has been popular 
to facilitate decision making. Recently, the fairness issue of recom-
mendation has become more and more essential. A recommender 
system is considered unfair when it does not perform equally well 
for diferent user groups according to users’ sensitive attributes (e.g., 
gender, race). Plenty of methods have been proposed to alleviate 
unfairness by optimizing a predefned fairness goal or changing 
the distribution of unbalanced training data. However, they either 
sufered from the specifc fairness optimization metrics or relied on 
redesigning the current recommendation architecture. In this paper, 
we study how to improve recommendation fairness from the data 
augmentation perspective. The recommendation model amplifes 
the inherent unfairness of imbalanced training data. We augment 
imbalanced training data towards balanced data distribution to im-
prove fairness. Given each real original user-item interaction record, 
we propose the following hypotheses for augmenting the training 
data: each user in one group has a similar item preference (click 
or non-click) as the item preference of any user in the remaining 
group. With these hypotheses, we generate “fake" interaction be-
haviors to complement the original training data. After that, we 
design a bi-level optimization target, with the inner optimization 
generates better fake data to augment training data with our hy-
potheses, and the outer one updates the recommendation model 
parameters based on the augmented training data. The proposed 
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framework is generally applicable to any embedding-based rec-
ommendation, and does not need to pre-defne a fairness metric. 
Extensive experiments on two real-world datasets clearly demon-
strate the superiority of our proposed framework. We publish the 
source code at https://github.com/newlei/FDA. 

CCS CONCEPTS 
• Information systems → Collaborative fltering; • Human-
centered computing → User models. 
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1 INTRODUCTION 
Recommender systems automatically help users to fnd items they 
may like, and have been widely deployed in our daily life for 
decision-making [14, 37, 40]. Given the original user-item historical 
behavior data, most recommendation models design sophisticated 
techniques to learn user and item embeddings, and try to accurately 
predict users’ unknown preferences to items [27, 40, 45]. Recently, 
researchers argued that simply optimizing recommendation accu-
racy lead to unfairness issues. Researchers have found that current 
recommender systems show apparent demographic performance 
bias of diferent demographic groups [16, 17]. Career recommender 
systems tend to favour male candidates compared to females even 
though they are equally qualifed [39]. Besides, recommendation 
accuracy performance shows signifcant diferences between ad-
vantaged user group and disadvantaged user group [41, 43]. 

Since the unfairness phenomenon has been ubiquitous in rec-
ommender systems and user-centric AI applications, how to defne 
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fairness measures and improve fairness to beneft all users is a trend-
ing research topic [24, 46]. Among all fairness metrics, group based 
fairness is widely accepted and adopted, which argues that the pre-
diction performance does not discriminate particular user groups 
based on users’ sensitive attributes (e.g., gender, race) [15, 20]. Given 
the basic ideas of group fairness, researchers proposed various 
group fairness measures and debiasing models to improve fair-
ness, such as fairness regularization based models [3, 53], sensitive 
attribute disentangle models [58], and adversarial techniques to 
remove sensitive attributes [52]. E.g., researchers proposed difer-
ent recommendation fairness regularization terms and added these 
terms in the loss function for collaborative fltering [53]. In sum-
mary, these works alleviate unfairness in the modeling process with 
the fxed training data and achieve better fairness results. 
Table 1: An illustration of unfairness of recommendation 
accuracy performance on MovieLens dataset. We divide users 
into two subgroups based on the gender attribute. For each 
group, we calculate the distribution of clicked items of the 
corresponding group based on the training data, as well as 
the hit items on Top-K recommendation from two widely 
used recommendation models. Then, we measure the distri-
bution diferences of the two groups with JS divergence. We 
consider two typically recommendation models (BPR [49] 
and GCCF [40]). We consider the corrected hit from Top-
K ranking list, denoted as “Top-20-Hit” and “Top-50-Hit”. 
The recommendation accuracy performance has larger JS 
divergence compared to the training data, showing recom-
mendation models exacerbate unfairness from training data. 

BPR [49] JS divergence GCCF [40] JS divergence 
Training data 0.1303 Training data 0.1303 
Top-20-Hit 0.4842 Top-20-Hit 0.4879 
Top-50-Hit 0.4349 Top-50-Hit 0.4229 

In fact, researchers agree that unfairness in machine learning 
mainly comes from two processes. Firstly, the collected historical 
data shows imbalanced distribution among diferent user groups or 
refects the real-world discrimination [9, 30]. After that, algorithms 
that learn the typical patterns amplify imbalance or bias inherited 
from training data and hurt the minority group [48, 52]. To show 
whether current recommendation algorithms amplify unfairness, 
let us take the MovieLens dataset as an example (detailed data 
description is shown in Section 5). We divide users into two sub-
groups based on the sensitive attribute gender. Given the training 
data, for each subgroup, we calculate the distribution over all items 
based on clicked items of users in this group. Then, we measure 
the distribution diferences of the two sub user groups with Jensen-
Shannon (JS) divergence [44]. After employing recommendation 
algorithms for Top-K recommendation, we measure the distribution 
diference of hit items of the two user groups. As can be seen from 
Table 1, the training data shows the preference distributions of the 
two groups are diferent. Both of the two recommendation mod-
els (i.e., BPR [49] and GCCF [40]) show larger group divergences 
of recommendation accuracy results compared to the divergence 
value of the training data. As a result, these two groups receive 
diferent benefts from the recommendation algorithms. Since all 
recommendation models rely on the training data for model opti-
mization, comparing with the huge works on model-level fairness 

research, how to consider and improve recommendation fairness 
from the data perspective is equally important. 

When considering fairness from data perspective, some previ-
ous works proposed data resampling or data reweighting tech-
niques to change data distribution [30, 48]. As a particular group of 
users (e.g., females) are underrepresented in the training data, BN-
SLIM is designed to resample a balanced neighborhood set of males 
and females for neighborhood-based recommendation [9]. Besides, 
given a specifc fairness measure in recommendation, researchers 
made attempts to add virtual users via a unifed optimization frame-
work [48]. These previous works show the possibility of improving 
fairness from the data perspective. However, they either sufered 
from applying to specifc recommendation models or relied on a 
specifc predefned fairness metric, limiting the generality to trans-
ferring to current RS architecture. 

In this paper, we study the problem of designing a model-agnostic 
framework to improve recommendation fairness from data aug-
mentation perspective. Given the original training data of user-item 
implicit feedback, we argue that the augmented training data are 
better balanced among diferent user groups, such that RS algo-
rithms could better learn preferences of diferent user groups and 
avoid neglecting preferences of the minority groups. As a result, 
we argue the augmented data should satisfy the following hypothe-
ses: for any user’s two kinds of preference (a click record or a 
non-click record) in one group, there is another user in the remain-
ing group (users with opposite sensitive attribute value) that has 
a similar item preference. With these hypotheses, we propose a 
general framework of Fairness-aware Data Augmentation (FDA 
) to generate “fake” data that complement the original training 
data. We design a bi-level optimization function with the inner and 
outer loop to optimize FDA . The proposed FDA is model-agnostic 
and can be easily integrated to any embedding-based recommenda-
tion. Besides, FDA does not rely on any predefned specifc fairness 
metrics. Finally, extensive experiments on two real-world datasets 
clearly demonstrate the superiority of our proposed framework. 

2 RELATED WORK 
Fairness Discovery and Measures. As machine learning tech-
nologies have become a vital part of our daily lives with a high social 
impact, fairness issues are concerned and raised [33, 46]. Fairness 
refers to not discriminating against individuals or user groups based 
on sensitive user attributes [19, 42]. One increasing requirement is 
how to defne and measure fairness. Current fairness metrics can be 
categorized into individual fairness and group fairness. Individual 
fairness refers to producing similar predictions for similar indi-
viduals, and group fairness argues not discriminating a particular 
user group based on the sensitive attribute [5, 7, 52, 54]. Among 
all group fairness metrics, Demographic Parity (�� ) and Equal-
ity of Opportunity (��) are widely accepted [12, 25]. DP requires 
that each particular demographic group has the same proportion 
of receiving a particular outcome [19, 56]. According to specifc 
tasks, researchers have proposed specifc demographic parity mea-
sures [10, 35, 56]. A notable disadvantage of demographic parity 
lies in ignoring the natural diferences across groups. To this end, 
EO is proposed for an equal proportion of receiving a particular 
outcome conditioned on the real outcome [2, 25, 47]. In other words, 
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a model is fair if the predicted results and sensitive attributes are 
independently conditioned on the real outcome [25]. 

Fairness aware Models. Building on the mathematical fair-
ness metrics, some researchers design task-oriented model struc-
tures to meet fairness requirements. Current model based fair-
ness approaches can be classifed into regularization based ap-
proaches [1, 18, 21, 29], causal based approaches [36, 38, 50], ad-
versarial learning based approaches [4, 52, 57], and so on. These 
methods ensure that the outcome of models can meet fairness 
requirements, and the modifcation of model structures heavily 
relies on specifc fairness defnitions. E.g., regularization-based ap-
proaches add one fairness constraint to achieve a specifc fairness at 
a time. Researchers need to design various constraints for achieving 
diferent fairness requirements [3, 18, 55]. 

Diferent from alleviating unfairness in the modeling process, 
some researchers attempted to solve fairness problems from the 
data perspective. Early works tried to directly remove the sensitive 
attribute from the training data [11, 34]. Some researchers argue 
that unfairness comes from the imbalanced training data of the pro-
tected and unprotected groups, and employ bagging and balance 
groups in each bag to build stratifed training samples [30]. Besides, 
perturbation approaches change the training data distribution with 
some prior assumptions of sensitive attributes, input features and la-
bels. After that, a perturbed distribution of disadvantaged groups is 
used to mitigate performance disparities [22, 32, 51]. Most of these 
data modifcation approaches are designed for classifcation tasks 
with abundant data samples, in which each data sample is indepen-
dent. In CF based recommender systems, users and items are corre-
lated with sparse interaction data. Therefore, current approaches 
of modifying data distribution in the classifcation task could not 
be easily adapted for the recommendation task with limited ob-
served user behavior data. Recently, the authors [48] propose two 
metrics that capture the polarization and unfairness in recommen-
dation. The framework needs to take one of the proposed metrics 
as the optimization direction, in order to generate corresponding 
antidote new user profles for the selected metric. By proposing 
the concept of a balanced neighborhood, the authors [9] borrow 
the idea of data sampling and design corresponding regularization 
to control neighbor distribution of each user. The regularization 
is applied to the sparse linear method (SLIM) to improve the out-
come fairness [9]. The above two models explore the possibility 
of improving recommendation fairness by changing the training 
data distribution. However, they either need to defne/introduce 
specifc fairness metrics or are only suitable for a particular kind of 
recommendation model with well-designed heuristics. Therefore, 
the problem of how to design a general fairness framework from 
the data perspective that is suitable for diferent recommendation 
backbones and multiple fairness metrics is still under explored. 

3 PRELIMINARY 
In a recommender system, there are two sets of entities: a user 
set � (|� | = �) and an item set � (|� | = � ), we denote the user-
item interaction matrix as � = [��� ]� ×� . We consider the common 
implicit feedback scenario. If user � has clicked item � , then ��� = 1 
indicates user � likes the item � , otherwise ��� = 0. For each user �, 
her clicked item set is denoted as �� = {� : ��� = 1}. 

As most modern recommender systems are built on embedding 
based architecture, we focus on embedding based recommendation 
models. Generally speaking, there are two key components for 
recommendation. First, a recommendation model Rec employs an 
encoder Enc to project users and items into the embedding space, 
formulated as E = ��� (� ,� ) = [e1, .., e� , ..., e�, ..., e�+� ], where e� 
is user �’s embedding, e� is item � ’s embedding. Then, the predicted 

� preference �̂�� can be calculated with �̂�� = e� e� . Learning high-
quality user and item embeddings has become the key of modern 
recommender systems. There are two typical classes of embedding 
approaches: the classical matrix factorization models [45, 49] and 
neural graph-based models [27, 40]. 

Given a binary sensitive attribute � ∈ {0, 1}, �� denotes user �’s 
attribute value. We divide the user set into two subsets: �0 and �1. 
If �� = 0, then � ∈ �0, otherwise � ∈ �1. Please note that as we do 
not focus on any specifc recommendation models, we assume the 
embedding based recommendation models are available, such as 
matrix factorization models [45] or neural graph-based models [40]. 
Our goal is to improve recommendation fairness with relatively 
high accuracy from the data augmentation perspective. 

Table 2: Mathematical Notations 

Notations Description 
U, V userset |� | = � , itemset |� | = � 
� ∈ {0, 1} a binary sensitive attribute ( 

�0, �1 
� ∈ �0 if �� = 0 

user group 
� ∈ �1 if �� = 1 

�0, �1 users, �0 ∈ �0, �1 ∈ �1 
�0, �1, �0, �1 real items 
�̄  0, �̄  1, �̄  0, �̄  1 fake items 
��� ,�� � real positive data, real negative data 
�̄�� ,�̄� � fake positive data, fake negative data 

4 THE PROPOSED FRAMEWORK 
In this section, we frst introduce two hypotheses in our proposed 
FDA framework. Then, we show how to optimize two hypotheses 
given a recommendation model. 

4.1 Hypotheses for Generating Fake Data 
We argue that the augmented data should be balanced between two 
user groups, such that RS could learn latent preferences of diferent 
groups without neglecting the minority group. Since users have 
two kinds of behaviors, i.e., click (positive behavior) and non-click 
(negative behavior), we corresponding propose two hypotheses to 
augment data towards balanced distribution. In other words, for 
each behavior data (�0, �, � ) of user �0 (�0 ∈ �0), item � , and the 
implicit feedback value � , we hope there is a user in the remaining 
group �1 that shows the same preference value � to a similar item. 
Under this assumption, we can improve data balance of diferent 
user groups by generating fake behavior data that complements 
the training data. Specifcally, the frst hypothesis focuses on the 
positive behavior among two groups (�0 and �1). 

Hypothesis 1. Assume that there is user �0 ∈ �0, and item �0 is 
one of user �0’s clicked items �0 ∈ ��0 . There should exist user �1 ∈ 
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Figure 1: The overall architecture of the proposed FDA framework. By not changing the recommendation model, our key idea 
is to improve data balance between diferent user groups via data augmentation. For each real data (�0, �, � ) of user �0 (�0 ∈ �0), 
item �, and the implicit feedback value � of this user-item pair from the training data, we hope there is a user in the remaining 
group �1 that shows the same preference value � to a similar item �̄  . As the detailed implicit feedback value � can be positive or 
unknown, we turn the above idea into two hypotheses. In the upper part of the fgure, according to Hypothesis 1, we generate 
two kinds of fake positive examples (�̄  �0�̄1 

and �̄  �1�̄0 
). Correspondingly, based on the generated fake data, we can obtain fake 

records (< �0, �̄1, �0 >, < �1, �̄0, �1 >). As shown in the lower part of the fgure, according to Hypothesis 2, we generate two kinds of 
fake negative data (�̄  �0 �̄1 

and �̄  �1 �̄0 
), and obtain fake records (< �0, �0, �̄1 >, < �1, �1, �̄0 >). 

�1 that also clicks a similar item �̄0 ≃ �0. Similarly, if user �1 ∈ �1 
has clicked item �1 ∈ ��1 , user �0 ∈ �0 should also click a similar 
item �̄1 ≃ �1. This hypothesis can be formulated as follows: 
∀�0 ∈ �0, �1 ∈ �1, � � ��0�0 = 1, �ℎ�� �̄  �1�̄0 

= 1; �ℎ��� �0 ≃ �̄0 . (1) 
∀�1 ∈ �1, �0 ∈ �0, � � ��1�1 = 1, �ℎ�� �̄  �0�̄1 

= 1; �ℎ��� �1 ≃ �̄1 . (2) 
In the above equations, �̄  �1�̄0 

and �̄  �0�̄1 
are fake interactions data 

that does not appear in the training data. 
The second hypothesis focuses on the negative behavior among 

two groups (�0 and �1): 
Hypothesis 2. If user �0 ∈ �0 does not click item �0 ∈ � − ��0 , 

there should also exist user �1 ∈ �1 that does not click similar 
item �̄0 ≃ �0. Correspondingly, if user �1 ∈ �1 does not click 
item �1 ∈ �\��1 , user �0 ∈ �0 should not click similar item �̄1 ≃ �1. 
This hypothesis can be formulated as follows: 
∀�0 ∈ �0, �1 ∈ �1, � � ��0 �0 = 0, �ℎ�� �̄  �1 �̄0 

= 0; �ℎ��� �0 ≃ �̄0 . (3) 
∀�1 ∈ �1, �0 ∈ �0, � � ��1 �1 = 0, �ℎ�� �̄  �0 �̄1 

= 0; �ℎ��� �1 ≃ �̄1 . (4) 
In the above equations, �̄  �1 �̄0 

and �̄  �0 �̄1 
are fake interactions. 

By employing Hypothesis 1& 2, we can adjust the training data 
to make sure that the augmented training data are balanced for 
diferent groups. 

4.2 Optimization For Fake Data 
After generating fake data, we focus on augmenting the original 
training data for implicit feedback based recommendation. In im-
plicit feedback based recommendation, pairwise learning has been 
widely used [27, 40, 49]. For each user �, if item � is clicked by 

user �, and item � is not clicked by user �, then this clicked item � 
is more relevant than a non-clicked item � , which can be formu-
lated as � >� � . As a result, the clicked item � should be assigned 
higher prediction value compared to the predicted preference of 
any non-clicked item � : 

∀� ∈ �� , � ∈ � − �� : �̂�� > �̂� � (5) 

� .� ., � � e� e� > e� e� . (6) 

Based on users’ two sensitive attribute values and two kinds of 
implicit feedback behaviors, we can obtain four types of interactions 
(i.e., positive interactions for users from two groups: ��0�0 and ��1�1 , 
negative interactions for users from two groups: ��0 �0 and ��1 �1 .) to 
support Hypothesis 1 and Hypothesis 2. The original training data 
contains two types of interactions as: 

= {< �0, �0, �0 >, < �1, �1, �1 >}, (7)����� 

where user �0 belongs to user group �0. Item �0 is a positive feed-
back of user �0, and item �0 is a negative feedback of user �0. Sim-
ilarly, for user �1 ∈ �1, item �1 is a positive feedback and item �1 
is a negative feedback. Next, we introduce how to construct the 
remaining two types of fake interactions and optimize them. 

Optimization of Hypothesis 1. Hypothesis 1 focuses on 
clicked items and encourages the positive behavior distribution 
of two groups are balanced. For each ����� , we can generate the 
corresponding fake data � � ���1 according to Hypothesis 1 as: 

= {< �0, �0, �0 >, < �1, �1, �1 >}, (8) 
� � ���1 

����� 

= {< �1, �̄0, �1 >, < �0, �̄1, �0 >}, (9) 
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where �0 ≃ �̄0 and �1 ≃ �̄1. � � ���1 denotes fake positive interaction 
data. Note that, given any two real positive behavior data (��0�0 

and �̄  �1�1 ), � � ���1 also contains two corresponding fake positive 
behavior data (�̄  �1�̄0 

and �̄  �0�̄1 ). Therefore, we have the following 
expressions on � � ���1: 

�̄0 >�1 �1 ��� �̄1 >�0 �0 . (10) 
Similar to Eq.(5), we can formulate Eq.(10) with the following opti-
mization goal: 

�̂�1�̄0 
> �̂�1 �1 ��� �̂�0�̄1 

> �̂�0 �0 , (11) 
which can also be calculated as follows: 

� � � � e�1 
ē �0 > e�1 

e�1 ��� e�0 
ē �1 > e�0 

e�0 . (12) 
Optimization of Hypothesis 2. Hypothesis 2 focuses on non-

clicked items and encourages the non-click behavior of two user 
groups to be balanced. For each triplet from ����� , we can gen-
erate the corresponding fake behavior data � � ���2 according to 
Hypothesis 2: 

����� = {< �0, �0, �0 >, < �1, �1, �1 >}, (13) 
� � ���2 = {< �1, �1, �̄0 >, < �0, �0, �̄1 >}, (14) 

where �0 ≃ �̄0 and �1 ≃ �̄1. Therefore, we have the following goal 
on � � ���2: 

�1 >�1 �̄0 ��� �0 >�0 �̄1, (15) 
Similarly, we can turn the above goal into optimization functions 
as: 

�̂�1�1 > �̂�1 �̄0 
��� �̂�0�0 > �̂�0 �̄1 

, (16) 
which can be calculated as follows: 

� � � � e�1 
e�1 > e�1 

ē �0 ��� e�0 
e�0 > e�0 

ē �1 . (17) 
We construct corresponding fake data for each hypothesis, then 

we integrate all fake data from � � ���1 and � � ���2: 
� � ��� = {� � ���1, � � ���2} 

= {< �1, �̄0, �1 >, < �0, �̄1, �0 >, < �1, �1, �̄0 >, < �0, �0, �̄1 >}. 
(18) 

With the implicit feedback, Bayesian Personalized Ranking (BPR) 
is widely used for learning the pairwise based optimization func-
tion [45, 49]. We also adopt BPR loss to optimize the fake data 
generation process: ∑ 

min L� ��� = − ��(� (�̂�� − �̂� � )) (19) 
<�,�, � >∈�� ���∑ 

= − ��(� (�̂�1�̄0 
− �̂�1 �1 )) 

<�1,�̄0, �1 >∈�� ���1∑ 
− ��(� (�̂�0�̄1 

− �̂�0 �0 )) 
<�0,�̄1, �0 >∈�� ���1∑ 

− ��(� (�̂�1�1 − �̂�1 �̄0 
)) 

<�1,�1, �̄0 >∈�� ���2∑ 
− ��(� (�̂�0�0 − �̂�0 �̄1 

)). 
<�0,�0, �̄1 >∈�� ���2 

The key challenge in Eq.(19) lies in estimating the fake data 
� � ��� . A direct approach is to defne a similarity function among 
items, and then fnd similar items within a predefned threshold. 
However, with sparse user-item click behavior data, directly com-
puting item similarities from user-item interaction matrix is not 
only time-consuming, but also not accurate. 

We propose to fnd similar items (�̄  and �̄ ) from continuous em-
bedding space. An intuitive idea is to utilize the well-trained embed-
dings from the recommendation model. Note that, recommender 
systems transform user/item ID to continuous embedding space: 
E = ��� (� ,� ). We therefore defne and fnd similar items (�̄  and �̄ ) 
based on continuous embedding space E. In order to satisfy the simi-
larity requirement, frst of all, the similar items need to lie within the 
original embedding distribution. Otherwise, it will seriously afect 
the recommendation accuracy. Inspired by adversarial examples 
and poisoning attacks [6], we employ a non-random perturbation 
� to generate similar items in continuous embedding E. 

For each item � , we add small random noise �� to the item original 
embedding e� , then we can construct the corresponding similar 
item embedding ē � . The similar item can be formulated as follows: 

ē � = e� + ��, �ℎ��� ∥�� ∥ ≤ � (20) 

The noise �� is bounded in a small range � , and the operator ≤ 
enforces the constraint for each dimension of �� . Since �� is a small 
“unseen” noise, it is natural that ē � is similar to e� and ē � also lies 
within the original embedding distribution. This method can meet 
the requirements of Hypothesis 1 and Hypothesis 2. By combining 
the similar item requirement in Eq.(20) and the optimization of the 
fake data in Eq.(19), the loss function on fake data can be changed 
into the embedding form as:∑ 

� � min L� ��� = − ��(� (e�0 
(e�1 + ��1 ) − e�0 

e�0 )) 
Θ 

�� ���∑ 
� � − ��(� (e�1 
(e�0 + ��0 ) − e�1 

e�1 )) 
�� ���∑ 

� � − ��(� (e�0 
e�0 − e�0 

(e�1 + � �1 ))) 
�� ���∑ 

� � − ��(� (e�1 
e�1 − e�1 

(e�0 + � �0 ))), (21) 
�� ��� 

where ��0 , ��1 , � �0 , � �1 respectively denote the small noises adding to 
corresponding item embeddings, and Θ denotes the combination 
of all small noises in the fake data. With fxed embeddings E from 
any recommender model, we optimize the Θ to generate fake data. 

4.3 The Overall Bi-Level Optimization 
After generating fake training data, we intend to integrate these 
fake data with original training data as augmented data. We could 
not use all the fake data for data augmentation as too many fake data 
records would dramatically modify the original data distribution, 
leading to decrease accuracy. To better trade-of, we develop a 
random mask operation to inject fake data. The mask operation 
can be formulated as follows: � �∑ 1, �������� 

�� = and �� ≤ ������� , (22)0, else 
�=1 

where ������� denotes the maximum number of selected fake 
data in each update. Obviously, ������� should be less than the 
number of items � . Since only part of the fake data is selected for 
training, the impact on recommendation accuracy can be controlled. 

After fake data records are selected by the mask operation, 
we combine the selected fake data � � ��� and original training 
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data ����� to construct the augmented data ����� . Next, we retrain 
the recommendation model on the augmented data. This training 
process of a recommender model is the same as the recommender 
model except that the data input is augmented. In short, the overall 
training process of FDA involves two iterative steps: generating 
fake data based on the previous recommendation embeddings and 
training recommendation models given updated fake data. The two 
iterative steps can be combined by solving the following bi-level 
optimization problem: ∑ 
min min L = − ��(� ( [��0 ∗ �̄  �1�̄0 

+ (1 − ��0 ) ∗ �̂�1�0 ] − �̂�1 �1 )) E Θ 
���� 

− ��(� ( [��1 ∗ �̄  �0�̄1 
+ (1 − ��1 ) ∗ �̂�0�1 ] − �̂�0 �0 )) 

− ��(� (�̂�1�1 − [� �0 ∗ �̄  �1 �̄0 
+ (1 − � �0 ) ∗ �̂�1 �0 ])) 

− ��(� (�̂�0�0 − [� �1 ∗ �̄  �0 �̄1 
+ (1 − � �1 ) ∗ �̂�0 �1 ])), 

(23) 

where ���� = ����� ∪ � � ��� is the augmented data. From this 
formulation, we can observe that our proposed FDA involves two 
levels of optimization. 

4.4 Discussion 
Model Analysis. Given the above bi-level optimization process 
of FDA , we now analyze why FDA can achieve a better balance 
between recommendation accuracy and fairness without changing 
the recommendation architecture (i.e., the outer loop that updates 
recommendation parameters). In the inner minimization loop, our 
key idea is to encourage for each triple behavior of the user, there 
is a user in the remaining group that shows the same preference 
value to a similar item. As users have two kinds of preferences (i.e., 
click and non-click), the key idea turns to two hypotheses for gen-
erating fake data. Therefore, the augmented data that contains both 
the training data and the fake data are more balanced compared 
to the original training data. For the original training data, the 
recommendation results are unfairer as recommendation results 
would amplify unbalance inherited from the input data. With more 
balanced data, the recommender models can output better fairness 
metrics even though the recommendation part does not model fair-
ness. Besides, as we constrain the fake data generated by adding 
a small random noise, and the fake data is controlled by a limited 
ratio with random mask operation, the recommendation accuracy 
can also be guaranteed. Compared to other data balance or data 
augmentation based fairness enhanced recommendation models, 
FDA shows the advantage of generally applicable to embedding 
based recommendation backbones and does not need to predefne 
a specifc group fairness metric. 

Extension to Multiple Sensitive Values. In FDA , similar as 
many fairness aware approaches, we start with the binary sensitive 
attribute values [9, 25, 53]. When dealing with a sensitive attribute 
with K (� > 2) values, a naive extension to multiple sensitive 
attribute values is to encourage that: for each user’s one kind of 
behavior to an item in one group, we encourage that there are other 
users in each remaining group that show the same behavior to a 
similar item. Therefore, for each hypothesis, we can generate � − 1 
fake data, and use the bi-level optimization with both original and 
the selected fake data with mask operation. 

5 EXPERIMENTS 

5.1 Experimental Setup 
Datasets. We conduct experiments on two publicly available 
datasets: MovieLens [26] and LastFM [13, 52]. For MovieLens 1, 
we adopt the same data splitting strategy as previous works for fair 
recommendation [8, 52]. We treat the items that a user’s rating is 
larger than 3 as positive feedback. Moreover, we randomly select 
80% of records for training and the remaining 20% records for the 
test. LastFM is a large music recommendation dataset 2. We treat 
the items that a user plays as the positive feedback. To ensure the 
quality of the dataset, we use the 10-core setting to ensure that 
users (items) have at least 10 interaction records. We split the histor-
ical records into training, validation, and test parts with the ratio of 
7:1:2. Besides the user-item interaction records, these two datasets 
also have the user profle data, including gender (two classes) for 
users. Similar as previous works, we treat gender as the sensitive 
attribute and divide users into two subgroups. The statistics of these 
two datasets are shown in Table 3. 

Table 3: Statistics of the two datasets. 
Datasets Users Items Traning Records Density 

MovieLens 6,040 3,952 513,112 2.150% 
LastFM 139,371 60,081 4,017,311 0.048% 

Evaluation Metrics. Since we focus on the trade-of between 
fairness and recommendation accuracy, we need to evaluate two 
aspects and report the trade-of results. On the one hand, we employ 
two widely used ranking metrics for recommendation accuracy: 
HR [23] and NDCG [31] to evaluate the Top-K recommendation. 
Larger values of HR and NDCG mean better recommendation accu-
racy performance. On the other hand, we adopt two group fairness 
metrics: Demographic Parity (DP) [56] and Equality of Opportu-
nity (EO) [25] to evaluate fairness. DP and EO evaluate group fair-
ness from diferent aspects. For both fairness metrics, the smaller 
values mean better fairness results. 

The following equation calculates DP measure: Í Í∑ | � ∈�0 
1�∈����� − � ∈�1 

1� ∈����� |
�� = 1/� Í Í , 

� ∈�0 
1� ∈� ���� + � ∈�1 

1� ∈� ���� � ∈� 

where �0 denotes user group with sensitive attribute �� = 0, and 
�1 denotes user group with sensitive attribute �� = 1. ����� is 
Top-K ranked items for user �. 

Please note that as DP forcefully requires similarly predicted 
results across diferent groups, it naturally neglects the natural
preference diferences of user clicked patterns [53]. EO is proposed 
to solve the limitation of DP [12, 24]. Specifcally, it requires similar
predicted results across diferent groups conditioned on user real
preferences. We calculate EO as follows: ∑ | Í 

� ∈�0 1� ∈� ���� &� ∈� ���� − 
Í 
� ∈�1 1� ∈����� &� ∈� ���� |

�� = 1/� Í Í , 
� ∈�0 1� ∈� ���� &� ∈� ���� + � ∈�1 1� ∈� ���� &� ∈� ���� � ∈� 

where ����� is items that user � clicks on the test data. Because 
not all predicted results have corresponding ground true labels, 
we calculate EO metric only on the testing data. A smaller EO 

1https://grouplens.org/datasets/movielens/
2http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html 
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Table 4: Recommendation accuracy and fairness performance on MovieLens with varying Top-K values. We compare all 
fairness-aware models, the best results are presented in bold font and the second best results are presented in underline. The 
performance improvement of our model against the best baseline is signifcant under the paired-t test. 

Model K=10 K=20 K=30 K=40 K=50 
HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ 

BPR 0.2478 0.2492 0.6541 0.7158 0.2770 0.2498 0.6198 0.6868 0.3147 0.2600 0.6088 0.6803 0.3519 0.2720 0.5960 0.6746 0.3849 0.2830 0.5861 0.6575 
GCCF 0.2607 0.2602 0.6391 0.7025 0.2913 0.2617 0.6182 0.6869 0.3301 0.2722 0.6011 0.6842 0.3708 0.2849 0.5856 0.6611 0.4059 0.2967 0.5740 0.6462 

BPR_DP 0.2209 0.2241 0.6524 0.7039 0.2446 0.2229 0.6063 0.6802 0.2798 0.2324 0.6132 0.6662 0.3145 0.2433 0.5939 0.6672 0.3427 0.2530 0.5921 0.6565 
BPR_EO 0.2259 0.2225 0.6510 0.7053 0.2507 0.2279 0.6194 0.6712 0.2862 0.2372 0.6162 0.6740 0.3204 0.2480 0.5976 0.6631 0.3529 0.2589 0.5950 0.6608 
GCCF_DP 0.2416 0.2420 0.6532 0.7155 0.2691 0.2434 0.6164 0.6865 0.3063 0.2535 0.6053 0.6767 0.3426 0.2650 0.5951 0.6665 0.3761 0.2763 0.5869 0.6607 
GCCF_EO 0.2407 0.2428 0.6479 0.7060 0.2698 0.2437 0.6211 0.6784 0.3068 0.2537 0.6066 0.6773 0.3428 0.2652 0.5980 0.6713 0.3748 0.2759 0.5844 0.6579 
FairUser 0.2306 0.2262 0.6502 0.7375 0.2656 0.2318 0.6167 0.7162 0.3088 0.2448 0.5986 0.6927 0.3494 0.2582 0.5864 0.6826 0.3847 0.2705 0.5761 0.6680 
BN-SLIM 0.2305 0.2287 0.6502 0.7349 0.2671 0.2334 0.6078 0.7061 0.3096 0.2457 0.5906 0.6958 0.3500 0.2589 0.5743 0.6816 0.3868 0.2716 0.5661 0.6747 
FDA_BPR 0.2307 0.2226 0.6132 0.6969 0.2716 0.2321 0.5730 0.6562 0.3157 0.2460 0.5635 0.6488 0.3566 0.2598 0.5537 0.6358 0.3941 0.2729 0.5450 0.6224 
FDA_NCF 0.2401 0.2322 0.6093 0.6946 0.2800 0.2367 0.5763 0.6644 0.3208 0.2544 0.5681 0.6464 0.3601 0.2711 0.5554 0.6306 0.3972 0.2824 0.5445 0.6205 
FDA_GCCF 0.2476 0.2430 0.6036 0.6773 0.2857 0.2487 0.5786 0.6593 0.3290 0.2614 0.5682 0.6462 0.3709 0.2748 0.5510 0.6231 0.4075 0.2873 0.5438 0.6130 

Table 5: Recommendation accuracy and fairness performance on LastFM with varying Top-K values. The performance im-
provement of our model against the best baseline is signifcant under the paired-t test. 

Model K=10 K=20 K=30 K=40 K=50 
HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ HR↑ NDCG↑ DP↓ EO↓ 

BPR 0.1323 0.1291 0.6372 0.6636 0.1991 0.1602 0.6235 0.6450 0.2480 0.1794 0.6178 0.6410 0.2869 0.1933 0.6126 0.6361 0.3195 0.2042 0.6109 0.6348 
GCCF 0.1361 0.1324 0.6321 0.6580 0.2038 0.1640 0.6220 0.6477 0.2533 0.1834 0.6143 0.6419 0.2929 0.1976 0.6105 0.6377 0.3259 0.2087 0.6065 0.6307 

BPR_DP 0.1272 0.1231 0.6064 0.6451 0.1927 0.1535 0.5956 0.6318 0.2407 0.1724 0.5899 0.6251 0.2789 0.1861 0.5839 0.6215 0.3108 0.1968 0.5821 0.6192 
BPR_EO 0.1292 0.1247 0.5933 0.6440 0.1958 0.1557 0.5738 0.6271 0.2444 0.1748 0.5637 0.6218 0.2830 0.1886 0.5577 0.6193 0.3155 0.1995 0.5541 0.6150 
GCCF_DP 0.1281 0.1234 0.6285 0.6636 0.1950 0.1544 0.6108 0.6473 0.2442 0.1738 0.6046 0.6400 0.2832 0.1877 0.5986 0.6355 0.3163 0.1988 0.5977 0.6377 
GCCF_EO 0.1295 0.1245 0.5912 0.6522 0.1969 0.1558 0.5681 0.6308 0.2461 0.1752 0.5530 0.6160 0.2855 0.1892 0.5471 0.6135 0.3176 0.2003 0.5427 0.6125 
BN-SLIM 0.0986 0.0943 0.6183 0.6630 0.1546 0.1204 0.6017 0.6557 0.1970 0.1371 0.5962 0.6517 0.2318 0.1496 0.5911 0.6467 0.2620 0.1597 0.5847 0.6411 
FDA_BPR 0.1301 0.1268 0.5604 0.5937 0.1965 0.1577 0.5535 0.5825 0.2455 0.1770 0.5524 0.5788 0.2848 0.1911 0.5479 0.5761 0.3180 0.2022 0.5457 0.5707 
FDA_NCF 0.1300 0.1248 0.5599 0.5931 0.1970 0.1575 0.5505 0.5801 0.2464 0.1770 0.5470 0.5748 0.2856 0.1913 0.5449 0.5720 0.3194 0.2025 0.5432 0.5700 
FDA_GCCF 0.1304 0.1268 0.5477 0.5789 0.1976 0.1580 0.5450 0.5693 0.2470 0.1774 0.5412 0.5688 0.2868 0.1917 0.5417 0.5676 0.3200 0.2029 0.5403 0.5641 

means there is less unfairness, as the two groups receive similar 
recommendation accuracy. 

Baselines. The baseline models can be divided into two cate-
gories: recommendation based models BPR [49] and GCCF [40], 
and the fairness-oriented models BN-SLIM [9], data augmenta-
tion model (FairUser) [48] and the fairness regularization based 
model [53]. FairUser adds virtual users to achieve fairness. As its 
optimization process is very time-consuming and needs to compute 
the full user-item matrix at each iteration, we only test FairUser 
on MovieLens dataset. Similar as the fairness regularization based 
model [53], we add diferent group fairness metrics (DP and EO) 
as regularization terms into recommendation based models. E.g., 
BPR_EO denotes treating EO as the regularization term for the base 
recommendation model of BPR. 

Our proposed framework FDA can be applied on diferent recom-
mendation backbones. We select BPR [49], NCF [28] and GCCF [40] 
as recommendation backbones show state-of-the-art performance. 
We use FDA_BPR, FDA_NCF and FDA_GCCF to denote the vari-
ants of our proposed framework with diferent recommendation 
backbones. 

Parameter Setting. Our implementations are based on Pytorch-
GPU 1.6.0. The embedding size is set as 64 for FDA. All the pa-
rameters are diferentiable in the objective function, and we use 
the Adam optimizer to optimize the model. In Eq.(23), the initial 
learning rate of Adam is 0.001 for the outer minimization and the 
inner minimization. 

5.2 Overall Performance on Two Datasets 
Table 4 and 5 report the overall results on two datasets. We have 
several observations from these two tables. FDA achieves the best 

performance from the two aspects: 1) improving EO and DP con-
currently; 2) the trade-of between recommender accuracy and 
fairness. 

First, when comparing each fairness metric, our proposed FDA 
outperforms other models on both DP and EO group fairness met-
rics. FairUser and BN-SLIM show worse performance than BPR (not 
considering fairness) on EO metric. BPR_EO and GCCF_EO can 
improve EO and DP concurrently. But, BPR_EO and GCCF_EO is 
worse than FDA. DP and EO refect the group fairness from two 
aspects. FDA achieves good results of multiple group metrics on 
all datasets. Thus, FDA can well alleviate the unfairness problem 
and achieve better fairness performance. Second, when compar-
ing the trade-of between recommender accuracy and fairness, all 
fairness-aware baselines perform worse on recommendation ac-
curacy performance than FDA. In other words, all fairness-aware 
baselines cause a larger decrease in recommender accuracy. There-
fore, while achieving better fairness performance, FDA has the least 
damage to accuracy on diferent datasets. We conclude that FDA 
can reach the best balance between accuracy and fairness. Third, 
no matter the base backbone model is BPR, NCF or GCCF, FDA can 
improve fairness and show better recommendation performance. 
FDA_BPR shows worse performance than FDA_GCCF. This is due 
to the fact that the base model (i.e., BPR) in FDA_BPR does not 
perform as well as the base graph embedding model GCCF. On the 
whole, for diferent recommendation backbone models and diferent 
experimental settings, FDA can efectively balance accuracy and 
fairness. This demonstrates the fexibility and efectiveness of FDA. 
Fourth, we observe the improvements of fairness on MovieLens are 
not so obvious as results on LastFM. In other words, eliminating 
unfairness on LastFM is easier than that on MovieLens. We guess a 
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Table 6: Ablation study of the two modules of FDA: Hypothesis 1 and Hypothesis 2 . 

Model Hypothesis 1 Hypothesis 2 
MovieLens LastFM 

HR@20 NDCG@20 DP@20 EO@20 HR@20 NDCG@20 DP@20 EO@20 
FDA_BPR ✓ ✕ 0.2706 0.2462 0.6099 0.6564 0.1971 0.1613 0.6017 0.6202 
FDA_BPR ✕ ✓ 0.2721 0.2360 0.5841 0.6682 0.1951 0.1552 0.5585 0.6016 
FDA_BPR ✓ ✓ 0.2716 0.2321 0.5731 0.6562 0.1965 0.1573 0.5392 0.5656 
FDA_GCCF ✓ ✕ 0.2650 0.2397 0.6078 0.6610 0.1850 0.1511 0.5905 0.6021 
FDA_GCCF ✕ ✓ 0.2876 0.2463 0.5824 0.6696 0.1906 0.1499 0.5647 0.5991 
FDA_GCCF ✓ ✓ 0.2857 0.2487 0.5786 0.6593 0.1976 0.1580 0.5450 0.5693 

possible reason is that the sparsity and number of users are diferent 
on these two datasets. 

5.3 Model Analyses 
Efects of fake data numbers. The setting of ������� plays an 
important role to control the maximum number of fake data. We 
conduct experiments on diferent ������� , as shown in Figure 2. 
Specifcally, we show diferent ratios of maximum fake data and 
the number of all items (������� /� ). Since the fake data is similar 
to the real data, the fake data does not seriously afect the recom-
mendation accuracy. When the ratio increases from 0.1 to 0.6, the 
recommended performance of FDA_BPR and FDA_GCCF does not 
decrease nearly. Among all ratios, we can fnd that FDA achieves a 
better balance on the fairness and recommender accuracy when the 
ratio equals 0.3 for FDA_BPR and 0.4 for FDA_GCCF on LastFM. 
The trend is similar on MovieLens. Due to the page length limit, 
the results on MovieLens are not reported. 

ratio
(a) FDA_BPR (b) FDA_GCCF

ratio

N
D
C
G
@
20

N
D
C
G
@
20

EO
@
20

EO
@
20

Figure 2: Performance under diferent ratios on LastFM. 

Measuring the distribution diferences of recommendation 
results. As shown in Table 1, we employ the Jensen-Shannon (JS) 
divergence to measure diferences of two user groups (i.e., �0 and 
�1) on the larger LastFM. We pay attention to Top-20 and Top-50 
ranked items, denoted as “Top-20” and “Top-50”. We also consider 
the corrected Top-20 and Top-50 ranked items, denoted as “Top-20-
Hit” and “Top-50-Hit” to measure the recommendation accuracy 
diferences between the two groups. As shown in Figure 3, FDA 
can also improve fairness performance compared to its original 
recommendation backbone. Also, we observe that JS divergence 
of “Top-20” and “Top-50” is smaller than that of “Top-20-Hit” and 
“Top-50-Hit”. This is reasonable as “Top-K” divergence measures 
ranking diferences between the two groups and does not take 
recommendation accuracy into consideration. In contrast, “Top-K-
Hit” measures the recommendation accuracy diferences between 
the two groups. Nevertheless, FDA can improve these two metrics. 

Ablation study. In this part, we investigate the efectiveness of 
each hypothesis: Hypothesis 1 and Hypothesis 2 of our proposed 
FDA framework. The results are illustrated in Table 6. From this 

FDA_BPR
BPR

metrics

FDA_GCCF
GCCF

metrics

Figure 3: The distribution diferences of recommendation 
results with two recommendation backbones on LastFM. 

table, we can obtain the following observations. First, each single 
hypothesis (Hypothesis 1 or Hypothesis 2) can help the model 
achieve comparable performance, indicating the usefulness of our 
proposed hypothesis. Second, compared with the performance of 
models with a single hypothesis, models with both of them (the 
entire FDA framework) have better performance, demonstrating 
the necessity of both hypotheses. As these two hypotheses consider 
diferent kinds of users’ click or non-click behavior, combining 
them together reaches the best performance. 

6 CONCLUSION 
In this paper, we studied the recommendation fairness issue from 
data augmentation perspective. Given the original training data, we 
proposed a FDA framework to generate fake user behavior data, in 
order to improve recommendation fairness. Specifcally, given the 
overall idea of balanced data, we proposed two hypotheses to guide 
the generation of fake data. After that, we designed a bi-level opti-
mization target, in which the inner optimization generates better 
fake data and the outer optimization fnds recommendation param-
eters given the augmented data that comprises both the original 
training data and the generated fake data. Please note that, FDA can 
be applied to any embedding based recommendation backbones, 
and does not rely on any specifc fairness metrics. Extensive exper-
iments on two real-world datasets clearly showed FDA is efective 
to balance recommendation accuracy and fairness under diferent 
recommendation backbones. 
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