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Abstract—Influenced by the great success of deep learning in computer vision and language understanding, research in recommendation

has shifted to inventing new recommender models based on neural networks. In recent years, we havewitnessed significant progress in

developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation

power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models from the perspective of

recommendationmodeling with the accuracy goal, aiming to summarize this field to facilitate researchers and practitionersworking on

recommender systems. Specifically, based on the data usage during recommendationmodeling, we divide the work into collaborative

filtering and information-rich recommendation: 1) collaborative filtering, which leverages the key source of user-item interaction data;

2) content enriched recommendation, which additionally utilizes the side information associatedwith users and items, like user profile and

item knowledge graph; and 3) temporal/sequential recommendation, which accounts for the contextual information associatedwith an

interaction, such as time, location, and the past interactions. After reviewing representative work for each type, we finally discuss some

promising directions in this field.

Index Terms—Recommendation survey, deep learning, neural networks, neural recommendation models

Ç

1 INTRODUCTION

INFORMATION overload is an increasing problem in people’s
every life due to the proliferation of the Internet. Recom-

mender system serves as an effective solution to alleviate
the information overload issue, to facilitate users seeking
desired information, and to increase the traffic and revenue
of service providers. It has been used in a wide range of
applications, such as e-commerce, social media sites, news
portals, app stores, digital libraries, and so on. It is one of
the most ubiquitous user-centered artificial intelligence
applications in modern information systems.

The research in recommendation can be dated back to
1990s [1], in the age the early work has developed many

heuristics for content-based and Collaborative Filtering
(CF) [2]. Popularized by the Netflix challenge, Matrix Factori-
zation (MF) [3] later becomes the mainstream recommender
model for a long time (from 2008 until 2016) [4], [5]. However,
the linear nature of factorization models makes them less
effective when dealing with large and complex data, e.g., the
complex user-item interactions, and the items may contain
complex semantics (e.g., texts and images) that require a thor-
ough understanding. Around the same time in themid-2010s,
the rise of deep neural networks in machine learning (a.k.a.,
Deep Learning) has revolutionized several areas including
speech recognition, computer vision, and natural language
processing [6]. The great success of deep learning stems from
the considerable expressiveness of neural networks, which
are particularly advantageous for learning from large data
with complicated patterns. This naturally brings new oppor-
tunities to advance the recommendation technologies. And
not surprisingly, there emerges a lot of work on developing
neural network approaches to recommender systems in the
past several years. In this work, we aim to provide a system-
atic review on the recommender models that use neural net-
works — referred to as “neural recommender models”. This is
the most thriving topic in current recommendation research,
not only has many exciting progresses in recent years, but
also shows the potential to be the technical foundations of the
next-generation recommender systems.

1.1 Differences With Existing Surveys

Given the significance and popularity of recommendation
research, there are some recently published surveys also
reviewed this area [2], [7], [8], [9], [10]. Here we shortly
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discuss the main differences with these work to highlight
the necessity and significance of this survey.

Existing surveys consist of two main parts. The first part
focuses on the specific topics or directions, such as side
information utilization in collaborative filtering [7], cross-
domain recommendation [8], explainable recommenda-
tion [11], knowledge graph-enhanced recommendation [12],
sequential recommendation [13], [14], and session-based
recommendation [15]. The other part follows the taxonomy
of Deep Learning (DL) to summarize the recommendation
methods. For example, Zhang et al.[16] organized the dis-
cussions on recommendation methods into MLP based,
autoencoder based, RNN based, attention based, etc. Similar
surveys can also be found [17], [18]. These surveys mainly
compare the technical difference of using various deep
learning methods for recommendation.

Different from existing surveys, our survey is organized
from the perspective of recommendation modeling with the
accuracy goal, and covers the most typical recommendation
scenarios, such as CF, content-enriched methods, and tem-
poral/sequential methods. This will not only help research-
ers understanding why and when a deep learning technique
would work but also facilitate practitioners designing better
solutions for a specific recommendation scenario.

1.2 How Do We Collect the Papers?

Since our survey focuses on reviewing recommender sys-
tem from the perspective of recommendation modeling
with the accuracy goal, we retrieved most of the related top
conferences such as WWW, SIGIR, KDD, ICLR, AAAI,
IJCAI, WSDM, and RecSys, as well as the top journals such
as TKDE, TKDD, and so on. Meanwhile, we also leveraged
Google Scholar to search the recent related work. According
to the categories that we made in this survey, we used key
words such as collaborative filtering, content+RS, recommender
systems, context+RS, side information, graph neural network,
neural recommendation, etc, to search the relevant work.
Then, based on the retrieved papers, we carefully design
the topical structure to cover all papers as completely as
possible. Besides, in order to avoid missing some important
work, we also double-checked those classic and influential
papers in recommendation.

1.3 Scope and Organization of This Survey

This survey is organized into two major parts: Sections 2, 3,
and 4 review existing methods, and Section 5 discusses
future directions and open issues. Before elaborating each
section, we first give the problem formulation.

Regardless of the recommendation domain and scenario,
we can abstract the “learning to recommend” problem as:

ŷu;i;c ¼ fðDu;Di;DcÞ; (1)

that is, learning the prediction function f to estimate the like-
lihood that a user u will favor an item i under the context c,
given the dataDu , Di , and Dc to describe the user u, item i,
and context c, respectively. In doing so, we allow a unified
framework to summarize neural recommendationmodels:

� Section 2 reviews collaborative filtering models, which
forms the basis of personalized recommendation

and is the most researched topic in recommendation.
They can be seen as ignoring the context data Dc and
using only the ID or interaction history inDu andDi.

� Section 3 reviews the models that integrate the side
information of users and items into recommenda-
tion, such as user profiles and social network, item
attributes and knowledge graph. We term them as
content-enriched models, which naturally extend col-
laborative filtering (CF) by integrating the side infor-
mation into Du and Di, whereas the context data Dc

is also ignored.
� Section 4 reviews themodels that use contextual infor-

mation. The contextual data are associated with each
user-item interaction, but do not belong to either user
content or item content, like time, location, and the
past interaction sequence [2]. The context-aware models
make predictions based on the context data Dc, in
addition to the user-related data Du and item-related
dataDi. Due to page limit, we focus on temporal con-
text, which is one of themost common contextual data.

Fig. 1 illustrates the typical data used for recommendation
modeling and threemodel types. It is worth noting that differ-
ent models are designed for different recommendation sce-
narios. Nevertheless, in many cases we can make simple
adjustments on a model’s component to make it suitable (at
least technically viable) for another scenario. For example,
many CF models are designed to first obtain user and item
representations, and then the prediction function is learned
given the user and item representations. To make them be
content-enriched, we simply need to enhance the representa-
tion learning component with content modeling. Another
example is that we can treat the contextual information as
part of user data, i.e., constructingDu;c to replaceDu, to tweak
content-enriched models to also be context-aware. Although
these adjusted models may not be officially proposed or pub-
lished, they can be obtained without much effort and worth
exploring in real applications. Such design flexibility can be
attributed to the layer-wise architecture of neural recommen-
dation models, where different layers are designed for differ-
ent aims. For convenience, we also summarize related neural
recommendation models into the taxonomy of recommenda-
tion modeling.1 We hope this survey would provide a clear
road-map to facilitate practitioners understanding and better
designingmodels for their purpose.

2 COLLABORATIVE FILTERING MODELS

The concept of CF stems from the idea that leveraging col-
laborative behaviors of all users for predicting the behavior

Fig. 1. An illustration of the data used for recommendation modeling and
the three model types.

1. https://github.com/lmcRS/AWS-recommendation-papers
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of a target user. Early approaches directly calculate the
behavior similarity of users (user-based CF) or items (item-
based CF) with memory based models. Later on, matrix fac-
torization based models become prevalent by collectively
finding the latent spaces that encode user-item interaction
matrix [3], [19]. Given the expressive complex modeling
power of neural networks, the current solutions for neural
CF can be summarized into two categories: representation
modeling of users and items, and user-item interaction
modeling given the representations.

2.1 Representation Learning

Let U and V denote users and items in CF, with R 2 RM�N is
a user-item interaction behavior matrix. The general objec-
tive is to learn a user embedding matrix P and an item
embedding matrix Q, with pu and qi denote the representa-
tion parameters for user u and item i, respectively.

In fact, as each user has limited behavior compared to the
large item set, a key challenge that lies in CF is the sparsity
of the user-item interaction behavior for accurate user and
item embedding learning. Different kinds of representation
learning models vary in input data, as well as the represen-
tation modeling techniques given the input data. We divide
this section into three categories: history behavior aggregation
enhanced models, autoencoder based models, and graph learning
approaches. For ease of explanation, we list the typical repre-
sentation learning models in Table 1.

2.1.1 History Behavior Attention Aggregation Models

By taking the one-hot User ID (UID), and one-hot Item
ID (IID) as input, classical latent factor models associate
each UID u and IID i with a free embedding vector of pu

and qi [3], [19]. Instead of modeling users with free embed-
dings, researchers further proposed borrowing users’ his-
torical behavior for better user representation modeling. E.
g., Factored Item Similarity Model (FISM) pools the inter-
acted item embeddings as a user representation vector [20],
and SVD++ [24] adds UID embedding pu with the interac-
tion history embedding (i.e., the FISM user representation)
as the final user representation. These models relied on sim-
ple linear matrix factorization, and used heuristics or equal
weights for the interaction history aggregation.

However, different historical items should contribute dif-
ferently to model a user’s preference. Thus, some research-
ers integrate neural attention mechanism into history
representation learning [25], [26], [42]. One representative
work is Attentive Collaborative Filtering (ACF) [26], which
assigns each interacted item with a user-aware attentive
weight to indicate its importance to user representation:

r̂ui ¼ pu þ
X
j2Ru

aðu; jÞqj

 !T

qi; (2)

where pu is the ID embedding of user u, Ru denotes the
items that u has interactedwith. aðu; jÞ is the attentiveweight
defined as:

aðu; jÞ ¼ expðFðpu;qjÞÞP
j02Ru

expðFðpu;qj0 ÞÞ
; (3)

where Fð�; �Þ is a function that can be implemented as a
MLP or simply inner product.

In practice, the influence of a historical item can be
dependent on the target item, e.g., the purchase of a phone
case is more related to the previous purchase of phone,
while the purchase of a pant could be more related to the
previous purchase of a shirt. As such, it may be beneficial to
have dynamic user representation when considering the
prediction on different target items. To this end, the Neural
Attentive Item Similarity model (NAIS) model [25] revises
the attention mechanism to be target item-aware:

r̂ui ¼
�X

j2Ru

aði; jÞqj

�T

qi

aði; jÞ ¼ expðFðqi;qjÞÞ
½Pk2Ru

expðFðqi;qkÞÞ�b
; (4)

where aði; jÞ denotes the contribution of historical item j to
user representation when predicting a user’s preference on
target item i. b is a hyper-parameter between 0 and 1 (e.g.,
0.5), for smoothing the interaction histories of different
lengths. Similar attention mechanisms have been adopted
for representation learning from interaction history, e.g., the
Deep Item-based CFmodel (DeepICF) [42] and Deep Interest

TABLE 1
Summarization of Representation Learning Approaches for CF
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Network (DIN) [43]. As such, interaction history contains
more information than single user ID and is a suitable choice
for representation learning.

2.1.2 Autoencoder Based Representation Learning

By utilizing the idea of reconstructing input for a better repre-
sentation learning, autoencoder based models take the incom-
plete user-item matrix as input, and learn a hidden
representation of each instance with an encoder, and further
with a decoder part that reconstructs the input based on the
hidden representation. By treating each user’s historical
records as input, the autoencoder based models learn each
user’s latent representation with a complex encoder neural
network, and feed the learned user representation into a
decoder network to output the predicted preference of each
user. An alternative approach is to take each item’s rating
records from all users as input, and learn the item’s latent
representation to reconstruct the predicted preference of each
item from all users [27], [28]. Similar to the development of
autoencoder, the extensions of autoencoder based models can
also be classified into two categories. The first category lever-
aged autoencoder variants, and injected denoising autoen-
coders [28], variational autoencoders [29] into CF. These
models can be seen as using complex deep learning techniques
for learning either user or item encoders. The second category
exploited the duality of users and items in autoencoders, and
designed two parallel encoders to learn the user and item rep-
resentations, and then also use inner product to model users’
preferences to items [30]. It is worth pointing out the autoen-
coder based CF approaches can also be classified as extensions
of the historical behavior attention based models, as these
approaches adopt deep neural networks for aggregating his-
torical behavior. Therefore, for the sake of simplicity, we have
only briefly introduced autoencoder based models and have
not repeated the specific technical details.

2.1.3 Graph Based Representation Learning

The CF effects are reflected in interaction histories of multi-
ple users. As such, using collective interaction histories has
the potential to improve the representation quality. From
the perspective of user-item interaction graph, the individ-
ual interaction history is equivalent to the first-order con-
nectivity of the user. Thus, a natural extension is to mine the
higher-order connectivity from the user-item graph struc-
ture. For example, the second-order connectivity of a user
consists of similar users who have co-interacted with the
same items. Fortunately, with the success of Graph Neural
Networks (GNNs) for modeling graph structure data in the
community [44], many prior studies have been proposed to
model the user-item bipartite graph structure for neural
graph based representation learning. Given the user-item
bipartite graph, let P0 and Q0 denote the free user latent
matrix and item latent matrix as many classical latent factor
based models, i.e., the 0th-order user and item embedding.
These neural graph based models iteratively update the
ðlþ 1Þth-order user (item) embedding as an aggregation of
the lth-order item (user) embedding. For instance, each user
u’s updated embedding pðlþ1Þ

u is calculated as: ss

aðlþ1Þ
u ¼ Aggðql

jjj 2 RuÞ; (5)

pðlþ1Þ
u ¼ rðWl½pl

u; a
ðlþ1Þ
u �Þ; (6)

where ql
j is item j’s representation at lth layer, Ru denotes

items that connect to user u in the user-item bipartite graph.
aðlþ1Þ
u is the aggregation of connected items’ representations
in the lth layer, Wl is an embedding transformation matrix
that needs to be learned, and rðÞ is an activation function.
After that, each user’s (item’s) final embedding can be seen
as combining each entity’s embedding at each layer.

The above steps can be seen as embedding propagation in
the user-item bipartite graph. With a predefined layer L, the
up to Lth order sub graph structure is directly encoded in the
user and item embedding representation step. For example,
SpectralCF utilized the spectral graph convolutions for
CF [35]. GC-MC [33] and NGCF [34] modeled the graph con-
volutions of user-item interactions in the original space, and
are more effective and efficient in practice. Very recently,
researchers argued that these neural graph based CF models
differ from the classical GNNs as CF models do not contain
any user or item features. Directly borrowing complex
steps such as embedding transformation, and non-linear
activations in GNNs may not be a good choice. Simplified
neural graph CF models, including LR-GCCF [39], and
LightGCN [40] have been proposed, which eliminate unnec-
essary deep learning operations. These simplified neural
graph based models show superior performance in practice
without the need of carefully chosen activation functions.

2.2 Interaction Modeling

Let pu and qi denote the learned embeddings of user u and
item i from representation models, this component aims at
interaction function modeling that estimates the user’s pref-
erence towards the target item based on their representa-
tions. In the following, we describe how to model users’
predicted preference, denoted as r̂ui based on the learned
embeddings. For ease of explanation, as shown in Table 2,
we summarize three main categories for interaction model-
ing: classical inner product based approaches, distance
based modeling and neural network based approaches.

Most previous recommendation models relied on the
inner product between user embedding and item embed-
ding to estimate the user-item pair score as: r̂ui ¼ p>

u qi ¼Pd
f¼1 pufqif . Despite its great success and simplicity, prior

efforts suggest that simply conducting inner product would
have two major limitations. First, the triangle inequality is
violated [45]. That is, inner product only encourages the
representations of users and historical items to be similar,
but lacks guarantees for the similarity propagation between
user-user and item-item relationships. Second, it models the
linear interaction, and may fail to capture the complex rela-
tionships between users and items [49].

2.2.1 Distance Based Metrics

To solve the first issue, a line of research [45], [46], [47] bor-
rows ideas from translation principles and uses distance
metric as the interaction function. The inherent triangle
inequality assumption plays an important role in helping
capture underlying relationships among users and items.
For instance, if user u tends to purchase items i and j, the
representations of i and j should be close in the latent space.
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Towards this end, CML [45] minimizes the distance dui
between each user-item interaction < u; i > in euclidean
space as: dui ¼ pu � qi

�� ��2
2
. Instead of minimizing the dis-

tance between each observed user-item pair, TransRec
exploits the translation principle to model the sequential
behaviors of users [46]. In particular, the representation of
user u is treated as the translation vector between the repre-
sentations of the items i and the item j to visit next, namely,
qj þ pu � qi.

Distinct from CML that uses simple metric learning that
assumes each user’s embedding is equally close to every
item embedding she likes, LRML introduces the relation
vectors r to capture the relationships between user and item
pairs [47] . More formally, the score function is defined as:

sui ¼ pu þ e� qi

�� ��2
F
; (7)

where the relation vector e 2 Rd is constructed using a neu-
ral attention mechanism over a memory matrix M. M 2
Rm�d is the trainable memory module, hence E is the atten-
tive sum of m memory slots. As a result, the relation vectors
not only ensure the triangle inequality, but also achieve bet-
ter representation ability.

2.2.2 Neural Network Based Metrics

Distinct from the foregoing that employs linear metrics,
recent studies adopt a diverse array of neural architectures,
spanning from MLP, Convolutional Neural Network
(CNN), and AE as the main building block to mine complex
and nonlinear patterns of user-item interactions.

Researchersmade attempts to replace similaritymodeling
between users and items with MLPs, as MLPs are general
function approximators to model any complex continuous
function. NCF is proposed to model the interaction function
between each user-item pair with MLPs as: r̂ui ¼
fMLPðpujjqiÞ. Besides, NCF also incorporates a generic MF
component into the interaction modeling, thereby making
use of both linearity of MF and non-linearity of MLP to
enhance recommendation quality.

Researchers also proposed to leverage CNN based archi-
tecture for interaction modeling. This kind of models first
generate interaction maps via outer product of user and
item embeddings, explicitly capturing the pairwise correla-
tions between embedding dimensions [50], [51]. These
CNN based CF model focuses on higher-order correlations
among representation dimensions. However, such improve-
ments on performance come at the cost of increasing model
complexity and time cost.

Besides, a line of research exploits AEs to fulfill the
blanks of user-item interaction matrix directly in the
decoder part [27], [28], [29], [30], [52], [53], [54]. As the
encoder and decoder can be implemented via neural net-
works, such stacks of nonlinear transformations give the
recommenders more capacity to model the user representa-
tion from complex combinations of all historically inter-
acted items.

Summary: Many recent studies have shown the superior-
ity of GNNs in the representation learning of users and
items. We ascribe the success to (1) the essential data struc-
ture, where the user-item interactions can be naturally rep-
resented as a bipartite graph between user and item nodes;
and (2) GNNs can explicitly encode the crucial collaborative
filtering signal of user-item interactions through informa-
tion propagation process. As for interaction modeling, com-
pared with the complex functions and metrics, simple inner
product is much more efficient especially in the online and
large-scale recommendation.

3 CONTENT-ENRICHED RECOMMENDATION

In collaborative filtering, item representations encode the
collaborative signal — behavioral patterns of users —
solely, but ignore the semantic relatedness. To enhance the
representation learning, many researchers go beyond the
user-item interactions and exploit auxiliary data. The auxil-
iary data could be classified into two categories: content
based information and context-aware data. Specifically, the
first category of content information is associated with users
and items, including general user and item features, textual
content (a.k.a, item tags, item textual descriptions and users’
reviews for items), multimedia descriptions (a.k.a, images,
videos, and audio information), user social networks, and
knowledge graphs. In contrast, contextual information
shows the environment when users make item decisions,
which usually denotes descriptions that beyond users and
items [2]. Contextual information includes time, location,
and specific data that are collected from sensors (such as
speed, and weather), and so on. Due to page limits, we dis-
cuss the most typical contextual data: temporal data. In the
following of the two sections, we would give a detailed
summary of the content-enriched recommendation and con-
text-aware recommendation. For the content-enriched rec-
ommendation, we classify the related work into five
categories based on the available content information: the
general features of users and items, the textual content
information, the multimedia information, social networks
and knowledge graphs.

TABLE 2
Interaction Modeling Techniques
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3.1 Modeling General Feature Interactions

Factorization Machine (FM) provides an intuitive idea of
feature interaction modeling [55]. As features are usually
sparse, FM first embeds each feature i into a latent embed-
ding vi, and models second-order interaction of any two
feature instances with xi and xj as: v

T
i � vjxixj. Naturally,

FM models the second-order interactions, and reduces the
parameter size of computing similarity of any two features
with embedding based models. FM has been extended to
field-aware FM by expanding each feature with several
latent embeddings based on the field aware property [56],
or higher-order FMs by directly expanding 2-order interac-
tions with all feature interactions [66]. Despite the ability to
model higher-order interactions, these models suffer from
noisy feature interactions in the modeling process.

Researchers have explored the possibility of adopting
neural models to automatically discover complex higher-
order feature interactions for CTR prediction and recommen-
dation. As shown in Table 3, besides FM based approaches,
current related work on this topic can be classified into three
categories: implicit MLP structures and explicit up to K-th
ordermodeling, and tree enhancedmodels.

MLP Based High Order Modeling. As the feature interac-
tions are hidden, researchers proposed to first embed each
feature with an embedding layer, and then exploit MLPs to
discover high order correlations. This category can be seen
as modeling feature interactions in an implicit way as MLPs
are black-box approaches, and we do not know what kind
of feature interactions from the output of the MLP structure
models. Since MLPs suffer from training difficulties, some
researchers proposed pretraining techniques [58]. Others
injected specific structures in MLPs for better capturing fea-
ture interactions. DeepCrossing designed residual struc-
tures to add back the original input after every two layers of
MLPs [60]. The NFM architecture has a proposed bi-interac-
tion operation before MLP layers [57]. PNN modeled both
the bit-wise interactions of feature embedding interactions
and vector-wise feature interactions [59]. Besides the com-
plex high order interactions, another effective approach is
to combine the MLP based high order modeling with the
classical linear models [62], [63].

Cross Network for K-th Order Modeling. The cross network
differs from the MLP based approaches with a carefully
designed cross network operation, such that a Kth layer
cross network models the up to Kth order feature interac-
tions. The kth hidden layer output xk is calculated by the
cross operation as: xk ¼ x0xk�1wk þ bk þ xk�1 [64]. Instead
of operating cross operations at a bitwise level, xDeepFM
applies cross interactions at the vector-wise level explic-
itly [65]. These kinds of models are able to learn bounded-
degree feature interactions.

Tree Enhanced Modeling. As trees can naturally show cross
feature interactions, researchers incorporated trees as a
proxy for recommendation with cross feature explanation.
Specifically, TEM [11] first utilizes decision trees to extract
high order interaction of features in the form of cross fea-
tures, and then input embeddings of cross features into an
attentive model to perform prediction. As a result, the depth
of the decision tree determines the maximum degree of fea-
ture interactions. Furthermore, by combining embedding
and tree based models seamlessly, TEM is able to unify their
strengths — strong representation ability and explainability.

3.2 Modeling Textual Content

Neural network technique has revolutionized Natural Lan-
guage Processing (NLP) [67], [68]. These neural NLP models
enable multi-level automatic representation learning of tex-
tual content, and can be combined in the recommendation
framework for better user and item semantic embedding
learning. Given the above neural based NLP models, we dis-
cuss some typical textual enhanced recommendation models
based on the above techniques. Textual content input for rec-
ommendation could be classified into two categories: the first
category is the content descriptions associated with either
items or users, such as the abstract of an article, or the content
descriptions of a user. The second category links a user-item
pair, such as users annotating tags to items, orwriting reviews
for products. For the second category, most models summa-
rize the associated content with each user, and each item [69],
[70]. Under such a situation, the second category of content
information degenerates to the first category. In the following,
we do not distinguish the input content data types, and sum-
marize the related work for modeling contextual content into
the following categories: autoencoder based models, word
embeddings, attention models, and text explanations for
recommendation.

Autoencoder Based Models. By treating item content as raw
features, such as bag-of-words and item tag representations,
these models use autoencoders and their variants to learn
the bottleneck hidden content representations of items [30],
[54], [71], [72], [73], [74], [75], [76], [77], [78]. For example,
Collaborative Deep Learning (CDL) [71] is proposed to
simultaneously learn each item i’s embedding qi as a combi-
nation of two parts: a hidden representation from the item
content xi with a stacked denoising autoencoder and an aux-
iliary embedding u that is not encoded in the item content as:

qi ¼ feðxiÞ þ ui; ui � Nð0; s2Þ; (8)

where feðxÞ transforms raw content input into a bottleneck
hidden vector with an autoencoder. ui is a free item latent
vector that is not captured in the item content, which is

TABLE 3
Classification of Modeling Feature-Enhanced CF

Category Modeling Summarization Models

Second order Model second order correlations with embedding based similarity FM [55], FFM [56]

MLP based higher order Design better initialization techniques to facilitate MLP modeling NFM [57], FNN [58], PNN [59], DeepCrossing [60], [61]
Combine deep and shallow features Wide&Deep [62], DeepFM [63]

Up toKth order modeling Deep cross network structure for defined order depth DCN [64], xDeepFM [65]
Tree structure Tree enhanced embedding for attentive cross feature aggregation TEM [11]
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similar to many classical latent factor based CF models. In
the model optimization process, the objective function is to
simultaneously optimize the rating based loss from users’
historical behavior and the content-reconstruction loss from
the autoencoder:

L ¼ LRðR; R̂Þ þ �LXðX; fdðfeðXÞÞÞ; (9)

where � is a parameter that measures the relative weight
between the two loss terms. In the above optimization func-
tion, R is the user-item rating matrix and R̂ denotes the pre-
dicted rating. Similarly, X is the item content input and
fdðfeðXÞÞ is an reconstructed content from an autoencoder
that encodes the item content into a bottleneck representa-
tion fe, and then reconstructs it with a decoder fd.

Following this basic autoencoder based recommendation
model, some studies proposed improvements to consider the
uniqueness of the content information. For example, instead
of learning a deterministic vector representation of the item
content, a Collaborative Variational AutoEncoder (CVAE) is
proposed to simultaneously recover the ratingmatrix and the
side content information with a variational autoencoder [74].
Researchers also proposed to leverage the item neighbor
information from item content to better represent the bottle-
neck representation of the item [79]. For some recommenda-
tion scenarios, items are also associated with category
information. A denoising autoencoder with weak supervision
is proposed to learn the distributed representation vector of
each item [80]. Besides, as both users and items could be
associated with content information, dual autoencoder
based recommendation models have been proposed [30],
[54], [73], [81].

Leveraging Word Embeddings for Recommendation. Autoen-
coders provide general neural solutions for unsupervised
feature learning, which do not take the uniqueness of text
input into consideration. Recently, researchers proposed to
leverage word embedding techniques for better content rec-
ommendation [69], [82], [83], [84], [85], [86], [87], [88]. With
the success of TextCNN [89], a Convolutional Matrix Factor-
ization (ConvMF) is proposed to integrate CNN into proba-
bilistic matrix factorization [82]. Let xi denote the text input
of item i. The item latent embedding matrixQ is then repre-
sented as a Gaussian distribution that centers around its
embedding representation as:

pðQjW;X; s2Þ ¼
YjV j

i¼1

NðqijTextCNNðW; xiÞ; s2Þ; (10)

where W is the parameters in TextCNN. Besides CNN
based models, researchers also employed various state-of-
the-art content embedding techniques, such as RNNs for
item content representation [90].

Reviews widely appear in recommendation applications
and are natural forms for users to express feelings about
items. Given user’s rating records and associated reviews,
most review based recommendation algorithms aggregate
historical review text of users (items) as user content input
DðuÞ (item content input DðiÞ). DeepCoNN [69] is a deep
model for review based recommendation. As shown in
Fig. 2, DeepCoNN consists of two parallel TextCNNs for
content modeling: one focuses on learning user behaviors
by exploiting review content DðuÞ written by user u, and
the other one learns item embedding from reviews DðuÞ
written for item i. After that, a factorization machine is pro-
posed to learn the interaction between user and item latent
vectors. Specifically, DeepCoNN can be formulated as:

r̂ui ¼ FMðTextCNNðDuÞ; TextCNNðDiÞÞ: (11)

Many studies have empirically found that the most pre-
dictive power of review text comes from the particular
review of the target user to the target item. As the associated
reviews of a user-item pair are not available in the test stage,
TransNet is proposed to tackle the situation when the target
review information is not available [83]. TransNet has a
source network of DeppCoNN that does not include the joint
review revui, and a target network that models the joint
review of the current user-item pair ðu; iÞ. Therefore, the tar-
get network could approximate the predicted review ^revui
for the test user-item pair even when users do not give
reviews to items.

Attention Models. Attention mechanism has also been
widely used in content enriched recommender systems.
Given textual descriptions of an item, attention based mod-
els have been proposed to assign attentive weights to differ-
ent pieces of content, such that informative elements are
automatically selected for item content representation [91],
[92], [93], [94], [95], [96], [97], [98]. For example, given a
tweet, the attention based CNN learns the trigger words in
the tweet for better hashtag recommendation [91]. With the
historical rated items of a user, an attention model is pro-
posed to selectively aggregate content representations of
each historical item for user content preference embedding
modeling [99], [100], [101]. Given user (item) collaborative
embeddings, and content based embeddings, attention net-
works have also been designed to capture the correlation

Fig. 2. The classical methods for content-enriched models.
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and alignment between these two kinds of data sources [98],
[102]. Researchers have also proposed a co-evolutionary topi-
cal attention regularizedmatrix factorizationmodel, with the
user attentive features learned from an attention network
that combines the user reviews, and the item attentive fea-
tures learned from an attention network that combines the
item reviews [102]. For review based recommendation,
researchers argued that most content based user and item
representation models neglected the interaction behavior
between user-item pairs, and a dual attention model named
DAML is proposed to learn the mutual enhanced user and
item representations [103]. As item content sometimes is pre-
sented inmulti-view forms (e.g., title, body, keywords and so
on), multi-view attention networks are applied to learn uni-
fied item representations by aggregatingmultiple representa-
tions from different views [104], [105], [106]. With both the
textual descriptions and the image visual information, co-
attention is utilized to learn the correlation between the two
modalities for better item representation learning [107], [108].

Text Explanations for Recommendation. Instead of improv-
ing recommendation accuracy with content input, there is a
growing interest of providing text explanations for recom-
mendation. Current solutions for explainable recommenda-
tions with text input can be classified into two categories:
extraction based models and generation based models.

Extraction based models focus on selecting important text
pieces for recommendation explanation. Attention techni-
ques arewidely used for extraction based explainable recom-
mendation, with the learned attentive weights empirically
showing the importance of different elements for model out-
put [104], [109]. After that, the text pieces with larger atten-
tive weights are extracted as recommendation explanations.
Despite extracting text pieces from reviews, there exist other
methods to extract useful text information for explanation,
such as review-level explanations [109], [110].

With the huge success of language generation techni-
ques [111], generation based models draw more and more
attention [70], [112], [113], [114], [115], [115], [116]. Given
both users’ rating records and reviews, the key idea of these
models is to design an encoder-decoder structure, with the

encoder part encodes related embeddings of users and
items, and the decoder generates reviews that are similar to
the ground truth of the corresponding user-item review
text. NRT is a state-of-the-art model that simultaneously
predicts ratings and generates reviews [112]. By taking the
one-hot user representation and item representation, the
encoder part outputs the user latent embedding and item
latent embedding, the review is generated with an RNN
based decoder structure, and the rating is predicted with an
MLP structure. Since we have both the ground truth rating
records and the corresponding records of users, the two
tasks of rating prediction and review generation can be
trained in a multi-task framework. Meanwhile, additional
information and more advanced encoder-decoder struc-
tures are also applied to explanation generation. For exam-
ple, user and item attributes [113], [117] are multimodal
item data [118], which are considered in the encoder. Then,
an advanced attention selector [114] is designed in the
decoder.

3.3 Modeling Multimedia Content

With the popularity of multimedia based platforms, visual
content based multimedia contents, e.g., images and videos,
are the most eye-catching for users. In the following, we
introduce related work on modeling multimedia content in
recommender systems. For ease of explanation, we summa-
rize the related work on multimedia based recommendation
with different kinds of input data in Table 4.

3.3.1 Modeling Image Information

The current solutions for image recommendation can be cat-
egorized into two categories: content based models and
hybrid recommendation models. Content based models
exploit visual signals for constructing item visual represen-
tations, and the user preference is represented in the visual
space [108], [122], [123], [124], [131], [144], [145], [146], [147].
In contrast, the hybrid recommendation models alleviate
the data sparsity issue in CF with item visual modeling [26],
[119], [121], [130], [134], [148], [149].

TABLE 4
Multimedia Based Recommendation Models With Different Kinds of Multimedia Input
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Image Content Based Models. Image content based models
are suitable for recommendation scenarios that rely heavily on
visual influence (e.g., fashion recommendation) or new items
with little user feedback. As visual images are often associated
with text descriptions (e.g., tags, titles), researchers designed
some unpersonalized recommender systems that suggest tags
to images [108], [145]. These models apply CNNs to extract
image visual information, and content embedding models to
get textual embedding. Then, in order tomodel the correlation
between visual and textual information, these models either
project text and images into a same space [122], concatenate
representations from different modalities [133] or design co-
attention mechanism to better describe items [107], [108].

For personalized image recommendation, a typical solu-
tion is to project both users and items in the samevisual space,
with the item visual space derived fromCNNs, and the user’s
visual preference either modeled by the items they like [144]
or a deep neural network that takes the user related profiles
as input [131], [146]. Researchers have also argued that CNNs
focus on the global item visual representation without fine-
grained modeling. Therefore, some sophisticated image
semantic understanding models have been proposed to
enhance image recommendation performance [122], [123],
[124], [125]. For instance, in order to suggestmakeups for peo-
ple, makeup related facial traits are first classified into struc-
tured coding. The facial attributes are then fed into a deep
learning based recommendation system for personalized
makeup synthesis [124]. In some visual based recommenda-
tion domains, such as the fashion domain, each product is
associated with multiple semantic attributes [123], [125]. To
exploit users’ semantic preferences for detailed fashion attrib-
utes, a semantic attributed explainable recommender system
is proposed by projecting both users and items in a fine-
grained interpretable semantic attribute space [123].

Hybrid Recommendation Models. Hybrid models utilize
both the collaborative signals and the visual content for rec-
ommendation, which could alleviate the data sparsity issue
in CF and improve recommendation performance. Some
researchers proposed to first extract item visual information
as features, and the item visual features are fed into factori-
zation machines for recommendation. Instead of the inferior
performance induced by the two step learning process,
recent studies proposed end-to-end learning frameworks
for hybrid visual recommendation [26], [119], [130], [134],
[140], [148]. Visual Bayesian Personalized Ranking (VBPR)
is one of the first few attempts that leverage the visual con-
tent for unified hybrid recommendation [119]. In VBPR,
each user (item) is projected into two latent spaces: a visual
space that is projected from the CNN based visual features,
and a collaborative latent space to capture users’ latent pref-
erences. Then, given a user-item pair ðu; iÞ with the associ-
ated image xi , the predicted preference r̂ui is learned by
combining users’ preferences from two spaces:

r̂ui ¼ pT
uqi þwT

u fðCNNðxiÞÞ; (12)

where fðCNNðxiÞÞ denotes the item content representation
by transforming items from the original visual space
CNNðxiÞ. In this equation, the first termmodels the collabora-
tive effectwith free user latent vectorpu and item latent vector
qi. The second termmodels the visual content preferencewith

the item visual embeddings as fðCNNðxiÞ, and the user
visual embeddingwu in the visual space.

Given the basic idea of VBPR, researchers have further
introduced the temporal evolution of visual trends in the
visual space [130], or the associated location representation of
the image [148]. Instead of representing users’ preferences
into two spaces, the visual content of the item has been lever-
aged as a regularization term in matrix factorization based
models, ensuring that the learned item latent vector of each
item is similar to the visual image representation learned
from CNNs [130]. Besides learning the CNN content repre-
sentations for item visual representation, many models have
been proposed to consider additional information from the
imagery for item visual representation, such as the pretrained
aesthetics learned from a deep aesthetic network [121]. As
users show time-synchronized comments on video frames,
researchers proposed a multi-modal framework to simulta-
neously predict users’ preferences to key frames and generate
personalized comments [135]. Compared to review genera-
tion models [112], the visual embedding is injected into both
the user preference prediction part, as well as each hidden
state of the LSTM architecture for better text generation.

Recently, GNNs have shown powerful performance in
modeling graph data with heuristic graph convolution [150],
[151]. PinSage is one of the first few attempts to apply
GNNS for web-scale recommender systems [127]. Given an
item-item correlation graph, PinSage takes node attributes
as input, and iteratively generates node embeddings to
learn the graph structure with iterative graph convolutions.
Researchers also proposed to formulate a heterogeneous
graph of users, outfits and items, and performed hierarchi-
cal GNNs for personalized outfit recommendation [128].

3.3.2 Video Recommendation

Researchers proposed content-based video recommender
systems with rich visual and audio information [142], [143].
Specifically, these proposed models first extracted video fea-
tures and audio features, and then adopted a neural network
to fuse these two kinds of features with early fusion or late
fusion techniques. As these content based video recommen-
dationmodels do not rely on user-video interaction behavior,
they can be applied to new video recommendation without
any historical behavior data [142], [143]. In contrast to the
content-based recommendation models, with user-video
interaction records, researchers proposed an Attentive Col-
laborative Filtering (ACF) model for multimedia recommen-
dation [26]. ACF leverages the attention mechanism with
visual inputs to learn the attentive weights to summarize
users’ preferences for historical items and the components of
the item. The key idea of ACF is to leverage users’ multime-
dia behavior and explicitly project users into two spaces: a
collaborative space and a visual space, such that users’ key
frame preference could be approximated in visual space. The
authors designed a model to discern both the collaborative
and visual dimensions of users, and model how users make
decisive item preferences from these two aspects [140].

3.4 Modeling Social Network

With the emergence of social networks, users like to per-
form item preferences on these social platforms and share
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their interests with social connections. Social recommenda-
tion has emerged in these platforms, with the goal to model
the social influence and social correlation among users to
boost recommendation performance. The underlying reason
for social recommendation is the existence of social influ-
ence among social neighbors, leading to the correlation of
users’ interests in a social network [152], [153], [154], [155],
[156], [157], [158]. We summarize social recommendation
models into following two categories: the social correlation
enhancement and regularization models, and GNN based
models.

Social Correlation Enhancement and Regularization. By treat-
ing users’ social behavior as the social domain and item
preference behavior as the item domain, the social correla-
tion enhancement and regularization models tried to fuse
users’ two kinds of behaviors from two domains in a unified
representation. For each user, her latent embedding pu is
composed of two parts: a free embedding eu from the item
domain, and a social embedding hu that is similar with
social connections in the social domain [152], [155], [157],
[159], [160]. In other words, we have:

hu ¼ gðu;SÞ (13)

pu ¼ fðeu;huÞ; (14)

where g models the social embedding part with the social
network structure as input, and f fuses the two kinds of
embeddings, such as concatenation, addition or neural net-
works. Different models vary in the detailed implementa-
tion of the social domain representation hu. For example, it
can be directly learned from the social network embedding
models [152], aggregated from the social neighbors’ embed-
ding [155], [159], or transferred from the social domain to
item domain with attention based transfer learning mod-
els [157]. Besides, the social network is also utilized as a reg-
ularization term in the model optimization process, with
the assumption that connected users are more similar in the
learned embedding space [152].

In the real-world, users’ interests are dynamic over time
due to users’ personal interests change and the varying
social influence strengths. Researchers extended the social
correlation based model with RNN to model the evolution
of users’ preferences under dynamic social influences [153],
[154]. Specifically, for each user u, her latent preferences ht

a

at time t could be modeled as the transition from her previ-
ous latent preference ht�1

u , as well as the social influence
from social neighbors at t� 1 as:

ht
u ¼ fRNN Rt

u;h
t�1
u ;

X
a2Su

tauh
t�1
a

 !
(15)

where Rt
u is the temporal behaviors of user u at this time,P

a2Su tauh
t�1
a denotes the influences from her social neigh-

bors. In particular, the social influence strength tau could be
simply set as equally for each social neighbor, or with atten-
tion modeling for influence strength inference.

GNN Based Approaches. Most of the above social recom-
mendation models utilized the local first-order social neigh-
bors for social recommendation. In the real world, the social
diffusion process presents a dynamic recursive effect to

influence a user’s decision. In other words, each user is influ-
enced recursively by the global social network graph struc-
ture. To this end, researchers argued that it is better to
leverage the GNN based models to better model the global
social diffusion process for recommendation. DiffNet is
designed to simulate how users are influenced by the recur-
sive social diffusion process for social recommendation with
the social GNN modeling. Specifically, DiffNet recursively
diffuses the social influence from step 0 to the stable diffu-
sion depth K. Let hk

u denote the user embedding at the kth
diffusion process, which is modeled as:

h0
u ¼ fNNðxu; euÞ (16)

h
ðk�1Þ
Su ¼ Poolðhðk�1Þ

a ja 2 SuÞ (17)

hk
u ¼ sðWk½hk�1

Su ;hðk�1Þ
u �Þ; (18)

where Eq. (16) fuses the user feature xu and user free latent
vector eu with a neural network fNN for initial influence dif-
fusion. At each diffusion step k, Eq. (17) models the influ-
ence diffusion from u’s social neighbors, and Eq. (18)
depicts the user embedding at the recursive step k by fusing
her previous embedding hk�1

u and influences from her social
neighbors as hk�1

Su . As k diffuses from step 1 to depth K, the
recursive social diffusion process is captured.

Instead of performing GNNs on the user-user social
graph, researchers have also considered jointly modeling
the social diffusion process in the social network and the
interest diffusion process in the user-item graph with het-
erogeneous GNN based models [158], [161], [162], [163],
[164], [165], [166]. For instance, DiffNet++ is proposed to
jointly model the interest diffusion from user-item bipartite
graph and the influence diffusion from the user-user social
graph for user modeling in social recommendation, and
have achieved state-of-the-art performance [164].

3.5 Modeling Knowledge Graph

Researchers have also considered leveraging Knowledge
Graphs (KG) for recommendation, which provide rich side
information for items (i.e., item attributes and external knowl-
edge). Typically, KG organizes such subject-property-object
facts in the form of directed graph G ¼ fðh; r; tjh; t 2 E; r 2
RÞg, where each triplet presents that there is a relationship r
from head entity h to tail entity t. Exploring such interlinks, as
well as user-item interactions, being a promising solution to
enrich item profile and enhance the relationships between
users and items. Furthermore, such graph structure endows
recommender systems the ability of reasoning and explain-
ability [167], [168], [169], [170], [171], [172], [173]. Recent
efforts for KG enhanced recommendation can be roughly cat-
egorized into three categories: path-basedmodels [168], [174],
[175], [176], [177], regularization-based models [132], [169],
[178], [179], and GNN-based approaches [97], [128], [141],
[170], [180], [181], [182], [183], [184], [185], [186], [187].

Path Based Methods. Many efforts introduce meta-
paths [174], [176], [177], [188], [189], [190], [191], [192] and
paths [168], [175], [193], [194], [195] that present high-order
connectivity between users and items, and then feed them
into predictive models to directly infer user preferences. In
particular, a path from user u to item i can be defined as a
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sequence of entities and relations: p ¼ ½e1 r1!e2
r2!� � � rL�1��! eL�,

where e1 ¼ u and eL ¼ i, and ðel; rl; elþ1Þ is the l-th triplet in
p, and L� 1 denotes the number of triplets in the path. As
such, the set of paths connecting u and i can be defined as
Pðu; iÞ ¼ fpg.

FMG [176], MCRec [177], and KPRN [168] convert the
path set into an embedding vector to represent the user-
item connectivity. Such paradigm can be summarized as
follows:

c ¼ fPoolingðffEmbedðpÞjp 2 Pðu; iÞgÞ; (19)

where fEmbedð�Þ embeds path p as a trainable vector. fPoolingð�Þ
is the pooling operation to synthesize all path information
into the connectivity representation, such as the attention
networks adopted in MCRec and KPRN. RippleNet [196]
constructs ripple set (i.e., high-order neighboring items
derived fromP) for each user to enrich her representations.

While explicitly modeling high-order connectivity, it is
highly challenging in real-world recommendation scenarios
because most of these methods require extensive domain
knowledge to define meta-paths or labor-intensive feature
engineering to obtain qualified paths [167], [170]. Moreover,
the scale of paths can easily reach millions or even larger
when a large number of KG entities are involved, making it
prohibitive to efficiently transfer knowledge.

Regularization Based Methods. This research line devises a
joint learning framework, where direct user-item interactions
are used to optimize the recommender loss, and KG triples
are utilized as additional loss terms to regularize the recom-
mender model learning. In particular, the anchors between
two modeling components are the embeddings of the over-
lapped items. CKE [132] makes use of Knowledge Graph
Embedding (KGE) techniques, especially TransR [197], to
generate additional representations of items, and then inte-
grates them with item embeddings of the recommender MF,
which is defined as:

qi ¼ fEmbedðiÞ þ fKGEðijGÞ; (20)

where fEmbedð�Þ is the embedding function which takes the
item ID as the input, while fKGE is the output of KGE
method which considers the KG structure. Similarly,
DKN [198] generates item embeddings from NCF and
TransE. These approaches focus on enriching item represen-
tations by the joint learning framework.

GNN Based Methods. The regularization-based methods
only take direct connectivity between entities into consider-
ation, while encoding the high-order connectivity in a rather
implicit manner. Due to the lack of explicit modeling, neither
the long-range connectivities are guaranteed to be captured,
nor the results of high-ordermodeling are interpretable [170].
More recent studies, such as KGAT [170], CKAN [199],
MKM-SR [200], and KGCN [180], get inspired by the advan-
ces of GNNs and explore the message-passing mechanism
over graphs to exploit high-order connectivity in an end-to-
end fashion.

KGAT [170] encodes user-item interactions and KG as a
unified relational graph by representing each user behavior
as a triplet, (u, Interact, i). Based on the item-entity align-
ment set, the user-item bipartite graph can be seamlessly
integrated with KG as a so-called collaborative knowledge

graph G ¼ fðh; r; tÞjh; t 2 E0; r 2 Rg, where E0 ¼ E [ U and
R0 ¼ R [ fInteractg. Over such graph, KGAT recursively
propagates the embeddings from a node’s neighbors (which
can be users, items, or other entities) to refine the node’s
embedding, and employs an attention mechanism to dis-
criminate the importance of the neighbors as:

pu ¼ fGNNðu;GÞ; (21)

where fGNNð�Þ is the GNN component.
Summary: Auxiliary data, such as text, multimedia, and

social network, is capable of enhancing the user and item
representation learning and boosting the recommendation
performance. The keys are the selection of auxiliary data and
the integration methods. For example, text information can
help models to generate corresponding recommendation
explanation. Social network information is very useful to
provide social influence and social correlation among users
for better recommendation. Meanwhile, attention mecha-
nism is a general method to select the most relevant informa-
tion from auxiliary data to enhance the representation
learning. GNN-based methods are good at obtaining struc-
ture information and high-order correlation for the utiliza-
tion of auxiliary data. As a conclusion, based on the
recommendation target (recommendation accuracy, expla-
nation, cold-start problem, etc), selecting proper auxiliary
data and integration method can help recommendation
models to achieve a good performance.

4 TEMPORAL/SEQUENTIAL MODELS

Users’ preferences are not static but evolve over time. Instead
of modeling users’ static preferences with the aforemen-
tioned models, temporal/sequential based recommendation
focuses on modeling users’ dynamic preferences or sequen-
tial patterns over time. Given a userset U¼½u1; u2; . . . ; uM �
and an itemset V¼½i1; i2; . . . ; iN �, current temporal/sequen-
tial recommendation could be generally classified into three
categories:

� Temporal based recommendation: For a user u2U and
an item i2V, the associated user-item interaction
behavior is denoted as a quadri-tuple as ½u; i; rui; tui�.
In this representation, rui denotes the detailed rating
and tui is the timestamp of this behavior. Temporal
recommendation focuses on modeling the temporal
dynamics of users’ behavior over time.

� Session based recommendation: In a certain session
s ¼ ½i1; i2; . . . ; ijSj� (s 	 V), a user interacts with a col-
lection of items (e.g., consumption with a shopping
basket, browsing the internet in a limited time
period). In many session based applications, users
do not log in and user IDs are not available [201],
[202], [203]. Therefore, the popular direction of ses-
sion based recommendation is to mine the sequential
item-item interaction patterns from the session data
for better recommendation.

� Temporal and session based recommendation: This
approach combines the definition of temporal recom-
mendation and session recommendation, in which
each transaction is described as ½u; s; t�, with s 	 V is
a collection of items that are consumed at a particular
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time t. Under this scenario, both the temporal evolu-
tion and the sequential patterns of items need to be
captured.

We summarize the main techniques for modeling tempo-
ral and sequential effects in recommender systems in Table 5
and illustrate some representative work in Fig. 3.

4.1 Temporal Based Recommendation

Temporal recommendation models focus on capturing the
temporal evolution of users’ preferences over time. Due to
the superior of RNNs in modeling temporal patterns, many
temporal based approaches take RNNs into consideration.
Recurrent Recommender Networks (RRN) is one of the rep-
resentative studies for temporal recommendation by endow-
ing both users and items with an LSTM autoregressive
architecture [204]. In RRN, the predicted rating r̂tui of user u
to item i at time t is modeled as:

r̂tui ¼ fðpt
u;q

t
iÞ where (22)

pt
u ¼ RNNðpðt�1Þ

u ;WxtuÞ; qt
i ¼ RNNðqðt�1Þ

i ;WxtiÞ (23)

where pt
u and qt

i are the dynamic embeddings of user u and
item i at time t, respectively. Specifically, f in Eq. (22) is a
temporal rating prediction function. Eq. (23) models the
evolution of users and items’ dynamic embeddings with
RNN architecture. As the user side and item side share simi-
lar LSTM structure, we take the user side as an example.

xtu 2 RjV j is a rating vector for u between t� 1 and current
time t, with each element xt

ul denotes the rating of user u to
each item l at that time. W is a transformation matrix that
needs to be learned. Therefore, RRN learns the evolution of
user and item latent vectors over time with two RNNs.
Based on RRNs, rich context factors were considered, such
as the social influence [153], [207], item metadata [208],
[250] and multimedia data fusion [251]. Take the RNN in
the user side as an example, and we can generalize the user
latent embedding evolution as:

pt
u ¼ RNNðpðt�1Þ

u ;Wxtu; ContextualEmbeddingÞ; (24)

where additional contextual embeddings are also injected to
model temporal evolution of users’ temporal embedding.

Recently, an emerging trend is to model the temporal
evolution with Neural Turning Machines [252] and Memory
Networks [253]. Compared to RNNs, memory networks
introduce a memory matrix to store the states in memory
slots, and update memories over time with read and write
operations. As the memory storage is limited, the key com-
ponent in applying memory networks in recommendation
is how to update memories over time with users’ temporal
behavior. Researchers proposed a general memory aug-
mented neural network with user memory networks to
store and update users’ historical records, and the user
memory network is implemented from the item and feature
level [211]. Researchers further proposed to use attention

TABLE 5
A Comparison of Methods That Models the Temporal and Sequential Effects in RS

Fig. 3. The classical methods for temporal/sequential models.
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mechanism in the memory reading and writing process
with soft-addressing, in order to better capture users’ long-
term stable and short-term temporal interests [210].

4.2 Session Based Recommendation

Many real-world recommender systems often encounter the
short session data from anonymous users, i.e., the user ID
information is not available. Session based recommendation
is popular under this situation, which models the sequential
item transition patterns given many session records. Hidasi
et al. [201] made one of the first few attempts to design
GRU4REC for session based recommendation under the
RNN based framework. Specifically, GRU4REC resembles an
RNN structure, which recursively takes the current item in
the session as input, updates the hidden states, and outputs
the predicted next item based on the hidden state. Given
anonymous sessions, the key component of GRU4REC is how
to construct mini-batches to suit the data forms of RNNs.
Since the goal is to capture how a session evolves over time
with itemdependencies, the authors designed a session paral-
lelmin-batches. The first events of the first several sessions are
extracted to form the first mini-batch, with the desired output
is the second event of the corresponding session. Under such
a formulation, the complex correlations of items in a session
are captured for session based recommendation.

GRU4REC has been further investigated with item fea-
ture consideration [202], local intent [214], user information
consideration [254], data augmentation techniques [215]. By
treating item ID, name, and category with an embedding
matrix, a sequence of clicks could be represented as frames.
Therefore, the architecture of 3D CNNs could be transferred
to session-based recommendation [220]. Furthermore, a self
attention based sequential model of SASRec is proposed.
SASRec models the entire user sequence without any recur-
rent and convolutional operations, and adaptively considers
consumed items for recommendation [221].

Researchers also proposed a translation based model to
capture the personalized sequential third order interactions
between a user u, the previous item j, and the current item
i. Given the item embedding matrix Q, each user’s embed-
ding pu can be approximated as: qi þ pu � qj [46]. There-
fore, the translation based models capture the correlation of
two constructive items.

While above models built relationships between consecu-
tive items in a session, how to globally model the transitions
in a session among distant items remain under explored.
Researchers adopted GNNs for session based recommenda-
tion [203], [224], [225], [226], [227], [228], [255], [256]. SR-
GNN is one of the first few attempts. As shown in Fig. 3, the
graph is constructed by taking all items as the graph node
set, and there is an edge between two nodes if these two
nodes appear in consecutive orders in a session. Then, the
GNN is adopted to learn item embeddings, such that the
higher-order relationships of items from session behavior
data can be modeled [203]. Different GNN based models
vary in graph construction, and graph aggregation pro-
cess [224], [225], [226].

4.3 Temporal and Session Based Recommendation

Given the session data of each user over time, models in this
category leverage both the temporal evolution modeling of

users, as well as the sequential item patterns hidden in the
sessions for recommendation. Currently, the solutions could
be classified into two categories: the first category learns
both users’ long term preference and the short term dynamic
preferences, and the second category adopts advanced neu-
ral models for learning a unified user representation.

In the first category, each user’s long term preference is
modeled from her historical behaviors, and the short term
dynamics is modeled from the previous session or the cur-
rent session [229], [230], [232] . For example, researchers
proposed hierarchical attention networks for temporal and
session based recommendation, with the first attention layer
learns the user long term preference based on historical
records, and the second one attentively aggregates user
representation from the current session as:

pt
u ¼ Att2ðpu; Att1ðql; l 2 T ðt�1Þ

u ÞÞ; (25)

where Att1 denotes the bottom layer attention network that
depicts the user’s short term preference from recent user
behavior T ðt�1Þ

u , and Att2 is a top layer attention network
that balances the short term user preference and long term
preference embedding vector pu. Instead of using hierarchi-
cal attentions, researchers proposed to adopt attention tech-
niques to learn item correlations, and designed recurrent
states at top layers for sequential recommendation [240].

Hierarchical RNNs are also proposed for personalized
session-based recommendation over time, with a session
level GRU unit to model the user activity within sessions,
and a user level GRU models the evolution of the user pref-
erence over time [200], [236]. Besides, researchers exploited
hierarchical attention networks to learn better short term
user preference with feature-level attention and item level
attention [231]. For the long term user interest modeling,
researchers proposed to leverage nearby sessions [235],
designed attention modeling or memory addressing techni-
ques to find related sessions [237], [244], [245], [257].

Another kind of models utilize the 3D convolutional
networks for recommendation, which defines the recommen-
dation problem as [51], [246]: ðSu

t�L; : . . . ; S
u
t�2; S

u
t�1Þ ! Su

t ,
where Su

t 	 V is the t-th time sequential behavior of user u at
time t, and L denotes the maximum sequence length. Convo-
lutional Sequence Embedding Recommendation (Caser) is a
representative work that incorporates CNNs to learn the
sequential patterns. It captures both user’s general preferen-
ces and sequential patterns, at both the union level and point
level with convolution operations, and captures the skip
behavior [51], [246].

Besides, researchers proposed to leverage the advances
of GNN based models for recommendation [247], [248],
[249]. The graph structure is constructed from all sessions to
form a global item correlation graph or graphs at each time
period. For example, researchers constructed time-aware
hypergraphs to model item correlations over time. After
that, the self attention modules are used to model users’
dynamic interests based on the learned dynamic item
embeddings over time [247].

Summary: Temporal/sequential based models focus on
the dynamic preferences of users over times. Therefore,
most existing work concentrates on the sequential informa-
tion of users and items, and leverages sequential models
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(e.g., RNN, Memory Network) to capture the trends of user
preference evolution. The main challenges lie in the recogni-
tion of long-term and short-term temporal interests, as well
as the identification of global and local interests in the
absence of user ID information. Since GNNs are skilled at
processing user-item interactions at different granularities,
we can observe that it receives more and more attention in
temporal/sequential based models.

5 DISCUSSION AND FUTURE DIRECTIONS

The foregoing various neural network based recommenda-
tion models have demonstrated the superior recommenda-
tion quality. However, we realize that current solutions for
recommendation are far from satisfactory, and there are still
many opportunities in this area. Therefore, we outline some
possible directions that deserve more research efforts from
the basis, modeling, and evaluation perspectives. Last but
not least, we present a discussion about the reproducibility
of recommendation models.

Basis: Recommendation Benchmarking. While the field of
neural recommender systems has seen a great surge of
interests in recent years, it has also been difficult for
researchers to keep track of what represents the state-of-the-
art models. It is urgent to identify the architectures and key
mechanisms that generalize to most recommender models.
However, this is a non-trivial task due to the following rea-
sons [258], [259], [260], [261]. First, the recommendation sce-
narios are diverse, e.g., static recommendation models or
dynamic recommendation models, content enriched or
knowledge enhanced models. Different recommendation
models rely on different data sets with varying inputs.
Besides, the same model would have varying performance
on different recommendation scenarios due to the assump-
tion in the modeling process. In fact, the Netflix competition
for CF based recommendation has passed more than 10
years, how to design a large benchmarking recommenda-
tion dataset that keeps track of the state-of-the-art recom-
mendation problems and update the leading performance
for comparisons is a challenging yet urgent future direction.

Models: Graph Reasoning & Self-supervised Learning. Graphs
are ubiquitous structures in representing various recommen-
dation scenarios. For instance, CF could be seen as a user-
item bipartite graph, content based recommendation is repre-
sented as an attributed user-item bipartite graph or a hetero-
geneous information network [151], [262], and knowledge
enhanced recommendation is defined as a combination of
knowledge graph and user-item bipartite graph. With the
great success of deep learning on graphs [151], it is promising
to design graph based models for recommendation. Some
recent studies have empirically demonstrated the superiority
of graph embedding based recommendation models, how to
explore the natural graph reasoning techniques for better rec-
ommendation is a promising direction. Besides, self-super-
vised learning [263], [264] is becoming emerged and showing
promises in recommendation tasks [265], [266], [267], [268],
[269]. Its core is to distill extra supervision signals from the
limited available user interaction data via some auxiliary
tasks and facilitate the downstream recommendation tasks.
As such supervisions are complementary to the user-item
interactions, they enhance the representation learning of

users and items. Incorporating self-supervised learning into
recommendation could offer promising solutions to the long-
standing issues of data sparsity and long-tail distribution.

Evaluation: Multi-Objective Goals for Social Good Recommen-
dation. Recommender systems have penetrated every aspect
in our daily life, and have greatly shaped the decision pro-
cess of providers and users. Most previous recommender
systems concentrated on the single goal of recommendation
accuracy based user experience. These systems limit the
ability to incorporate user satisfaction from multiple goals,
e.g., recommendation diversity and explanations to per-
suade users [9]. Besides, the user-centric approach neglects
system objectives from multistakeholders and the society.
The data-driven approaches with accuracy as goals may
lead to biases in the algorithmic process decision pro-
cess [270], [271], [272], [273]. For recommender systems,
researchers have realized that long tailed items have fewer
chances to be recommended, and benefiting users may
obscure concerns that might come from other stakeholders
in this system. How to provide multi-objective goals for
social good recommendation, such as explainability, bal-
ance of multistakeholders, and fairness for the society is an
important research topic that needs to be paid attention to.

Discussion: Reproducibility. While the neural recommen-
dation models have dominated in the recommendation
field and claimed substantial improvements over previous
models, recent efforts raise questions about their repro-
ducibility and published claims [258], [259], [260], [261],
[274]. This can be attributed to two aspects. First, neural
recommendation models are based on neural networks,
which are hard to tune in practice. Thus, we should care-
fully choose the initialization, tune hyperparameters,
avoid model collapse, and so on. Besides, due to the vari-
ous application scenarios of recommendation, different
models vary in the selection of datasets and setting of
experiments. Specifically, it is well known that recom-
mender models are sensitive to the dataset size, the dataset
sparsity, the data preprocessing and splitting techniques,
the strategy of negative sampling, the choice of loss func-
tion and optimization manner, and the evaluation metrics
of performance. Thus, it is very challenging to conduct a
fair performance comparison. In order to advance the recom-
mendation community, some researchersmake efforts on the
data level, such as industry-relevant recommendation
benchmark [275], MIcrosoft News Dataset (MIND) [276],
and Yelp dataset.2 Others concentrate on the unified evalua-
tion framework [277], [278]. For example, researchers argue
that previously default choice of evaluating recommender
models with sampled metrics (e.g., rather than using the full
set, only sampling a small set of negative items during test-
ing) would be inconsistent to the true trend [279]. Towards
fair and reproducible comparisons, it is of crucial importance
to make the experimental settings transparent (e.g., release
the codes, datasets, and experimental settings, and set up a
leaderboard if possible). Furthermore, beyond network
architecture engineering and hunting for the “best” perfor-
mance, research studies on theoretical considerations and
reproducibility analysis should be encouraged.

2. https://www.yelp.com/dataset
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6 CONCLUSION

In this survey, we provide a systematic review on neural
recommender models from the perspective of recommenda-
tion modeling with accuracy goal. Based on the data usage,
we organize existing work into three categories: collaborative
filtering model, content enriched model, and temporal/sequential
model. In each part, we summarize a bunch of influential
research work and conclude corresponding main contribu-
tions as well as our opinions. Moreover, we also elaborate
possible promising directions from the basics, modeling,
and evaluation perspectives, and reproducibility problem
in recommender systems. Still, a large number of novel
methods and techniques are proposed each year. We hope
this survey is able to help reader to quickly understand the
development and key aspects of recommendation model-
ing, and inspires some future studies.
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