
SCIENCE CHINA
Information Sciences

December 2022, Vol. 65 222102:1–222102:15

https://doi.org/10.1007/s11432-020-3404-y

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. RESEARCH PAPER .

FairCF: fairness-aware collaborative filtering

Pengyang SHAO1, Le WU1,2,3*, Lei CHEN1, Kun ZHANG1,2 & Meng WANG1,2,3*

1School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China;
2Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei 230601, China;

3Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China

Received 26 December 2020/Revised 8 April 2021/Accepted 30 August 2021/Published online 17 November 2022

Abstract Collaborative filtering (CF) techniques learn user and item embeddings from user-item interac-

tion behaviors, and are commonly used in recommendation systems to help users find potentially desirable

items. Most CF models optimize recommendation accuracy; however, they may lead to unwanted biases

for particular demographic groups. Thus, we focus on learning fair representations of CF-based recom-

mendations. We formulate this problem as an optimization task with two competing goals: embedding

representations better meet accuracy requirements of recommendations, and simultaneously obfuscate infor-

mation hidden in the embedding space, which is related to the users’ sensitive attributes for fairness. Here,

the intuitive idea is to use fair representation learning from machine learning to train a classifier with a sen-

sitive attribute predictor from the user side to satisfy the fairness goal. However, such fair machine learning

models assume entity independence, which differs greatly from CF because users and items are correlated

collaboratively via user-item behaviors. Therefore, sensitive user information can be exposed from the users’

preferred items. Consequently, defining only fairness constraints on users cannot achieve fairness in recom-

mendation systems. In this paper, we propose FairCF framework for fairness-aware collaborative filtering.

In particular, we first define fairness constraints in a fair embedding space, where both a user classifier and

an item classifier are employed to fit the fairness constraints. We then design an item classifier without item

sensitive labels. The proposed framework can be trained in an end-to-end manner under most embedding

based CF models. Extensive experiments conducted on three datasets (MovieLens-100K, MovieLens-1M,

and Lastfm-360K) clearly demonstrate the superiority of the proposed FairCF framework relative to various

fairness metrics (i.e., performance of newly-trained classifiers) than other state-of-the-art fairness-aware CF

models with less than 4% accuracy reduction.

Keywords recommendation systems, fairness, adversarial learning

Citation Shao P Y, Wu L, Chen L, et al. FairCF: fairness-aware collaborative filtering. Sci China Inf Sci, 2022,

65(12): 222102, https://doi.org/10.1007/s11432-020-3404-y

1 Introduction

Recommendation systems help users identify potential interests in various items and are used widely [1–4].
Collaborative filtering (CF) is a popular technique in recommendation systems due to its relatively high
performance and easy-to-collect user-item interaction data [5–9]. CF models assume that users and items
are correlated collaboratively from their behavior data, and state-of-the-art CF models focus on learning
accurate user and item embeddings from the user-item interaction data. Then, users’ preferences for items
can be predicted directly by comparing the similarity between the learned user and item embeddings.
For example, classical latent factor models learn user and item embeddings using matrix factorization
techniques [5, 7, 10]. Recently, studies have argued that users and items naturally form a user-item
bipartite graph, and neural graph models have exhibited superior performance compared to classical
latent factor models [3, 8].

Most CF-based recommendation models focus on recommendation accuracy; however, some researchers
have argued that user-centric recommendation may inherit biases in training data and lead to unfairness
issues, thereby potentially discriminating against a specific population. For example, a job recommenda-
tion platform, Xing, was found that more qualified female candidates are ranked lower than less qualified
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male candidates1) [11]. News recommendation can easily capture biases related to gender and leads to
recommending biased news for users [12]. Ad recommendation shows obvious racial biases among users
with similar interests [13]. Rather than facilitating unfair recommendations that favor a particular de-
mographic group, ideally, we would like to construct a recommendation model that provides accurate
recommendation results and is not discriminatory to any sensitive user groups.

Ensuring fairness in user-related machine learning has received increasing attention in recent years.
Most studies in this area have focused on fair user classification tasks [14–16]. Given a sensitive attribute,
users are binned into different subgroups based on the detailed sensitive attribute value. These models
attempt to optimize two competing goals simultaneously, i.e., maximizing classification accuracy and min-
imizing the classification prediction differences of different subgroups to achieve fairness [16,17]. Various
models have been proposed to add fairness based regularization terms to these classification tasks [18].
Recently, with the huge success of representation learning, many approaches have turned to learning fair
representations to satisfy two goals, i.e., the learned representations are predictive for downstream tasks,
and no sensitive information is encoded in the representations [19–22]. Specifically, adversarial training
is widely used to learn fair representations, and an additional sensitive classifier is trained to predict the
sensitive attribute [20, 21]. The encoder and sensitive attribute classifier play a minimax game to match
the conditional distribution of the representations of each subgroup to satisfy fairness requirements [22].
Similarly, some studies have attempted to implement debias in recommendations. For example, previous
studies added carefully designed fairness regularization terms of subgroup users in matrix factorization-
based CF models [23] or relied on learning adversarial fair embeddings of users to match embedding
distributions of different subgroups [24]. Such fair recommendation models enhance recommendation
fairness and maintain high recommendation accuracy.

Despite the success of these fair recommendation models, we argue that current fair CF models are still
not satisfactory. Most fair recommendation models inherit fairness techniques from fair classification in
machine learning, and they assume that each instance is independent in the modeling process. In CF sys-
tems, there are two kinds of entities, i.e., user and item entities. Users and items are not independent but
are related collaboratively. This collaborative correlation is also reflected in the user and item embedding
learning process because users and items are mapped in the same low latent space for recommendation
prediction. Thus, if we borrow fair classification techniques with user side fairness consideration, the
users’ sensitive attributes will still be exposed via their item behaviors. Consider a recommendation sys-
tem that recommends different types of shoes. In this system, we could not acquire gender information
from the user side. However, if we find that a given user has clicked on high-heeled shoes many times,
we can infer that this user is probably female. Even though we can apply fair representation learning
techniques to ensure that the users’ representation are fair without any sensitive attribute information,
the items the users interact with will still expose their sensitive attributes, which results in unfairness
issues.

Therefore, in this paper, we investigate how fair representations can be learned for CF-based recom-
mendation systems. Here, an intuitive concept is to play a two-player minimax game between the CF
algorithm and an additional sensitive attribute classifier. Specifically, the classifier attempts to infer
labels of sensitive user information from user embeddings, and the embedding-based CF module prevents
the classifier from predicting the sensitive attribute. Under such an adversarial training procedure, the
representation distribution differences among different user subgroups are reduced [22,25]. However, users
and items are correlated collaboratively; thus, sensitive user information can be inferred from the item
rated by the user. To consider the collaborative correlation between users and items, we define fairness
constraints on item embeddings and propose an item adversarial module to alleviate unfairness caused
by this user-item correlation. The item adversarial module is difficult to implement because items do not
have sensitive label information. To address this issue, we first demonstrate how pseudo labels of items
can be assigned based on the given sensitive labels of the users. We then design a FairCF framework that
encourages fairness on both the user and item sides. FairCF involves three loss terms, i.e., an accuracy-
based loss term that measures recommendation accuracy and two classification-based loss that attempt
to eliminate unfairness exposed by user-sensitive labels and pseudo labels of items. The proposed FairCF
framework is flexible and can be applied to state-of-the-art embedding-based CF models. Extensive ex-
periments were conducted on three real-world datasets to demonstrate the effectiveness of the proposed
framework. In summary, our primary contribution lies in discovering the correlations of users and items

1) https://www.xing.com/.

https://www.xing.com/


Shao P Y, et al. Sci China Inf Sci December 2022 Vol. 65 222102:3

for fairness modeling, proposing a simple solution to tackle unfairness caused by the correlations, and
validating the proposed framework through extensive experimental results.

2 Related work

2.1 Recommendation systems

Recommendation systems have been widely used to help users find potential items of interest [1, 26, 27].
Typically, recommendation systems involve two kinds of entities, i.e., a user set U (|U | = M) and an item
set V (|V | = N). Interactions between users and items can be represented as an interaction matrix R =
{ruv}M×N , where ruv denotes the interaction between user u and item v. Specifically, if user u has rated
item v, the interaction ruv equals the true rating, forming observed triplets (u, v, ruv). If user u has not
rated item v, then ruv = 0. Learning high-quality user and item embeddings is the foundation of modern
recommendation systems [7, 8, 28, 29]. Let E = [EU ,EV ] = [e1, . . . , eu, . . . , eM , . . . , ev, . . . , eM+N ] ∈
R

(M+N)×D denote the learned embedding space, where EU = [e1, . . . , eM ] represents user embeddings,
and EV = [eM+1, . . . , eM+N ] represents item embeddings. Here, D denotes the latent factor dimension,
and eu and ev denote user u’s and item v’s corresponding embeddings in E, respectively. Based on the
learned embeddings, the predicted preference r̂uv of user u for item v is calculated as follows:

r̂uv = eTuev + bu + bv + µ, (1)

where bu and bv represent user biases and item biases, respectively, and µ represents the global average
rating. Here, eTuev denotes the inner product between eu and ev.

Classical latent factor-based models apply matrix factorization to learn the user and item embed-
dings [5,6]. Users and items naturally form a user-item bipartite graph G = 〈U ∪ V,R〉 with interactions
R; thus, neural graph-based models have been proposed recently to learn user and item embeddings [3,8].
The key idea of neural graph-based models is to update each user’s (item’s) higher order embedding it-
eratively by aggregating neighborhood embeddings in the previous layer. Therefore, the final user (item)
embedding contains the user’s (item’s) subgraph structure in the user-item bipartite graph. These neu-
ral graph-based models exhibit better performance than matrix factorization models because they can
alleviate the data sparsity issue in CF by injecting CF signals for representation learning.

2.2 Fairness in machine learning

Studies have found that machine learning models inherit biases in the training data and exhibit dis-
crimination [15, 30]. In addition, different fairness definitions have been proposed. Individual fairness
requires that similar individuals should be treated similarly [11, 31]. Counterfactual fairness ensures the
same treatment in the factual world or a counterfactual world [32]. Among these fairness definitions,
group fairness, which has been widely studied [33–35], ensures the same treatment for different groups.
In this paper, we focus on fair representation learning for group fairness due to the generality and recent
rapid developments in representation learning. Fair representation learning performs feature learning
to facilitate both downstream tasks and group-based fairness requirements on the learned representa-
tions [19–22]. A regularization-based fair representation framework has been proposed previously, where
the representations encode data and obey the statistical parity principle [19]. Based on adversarial learn-
ing from generative adversarial nets [25], an adversarial method has also been proposed to learn fair
representations [20]. Group fairness definitions were theoretically proven to connect to adversarial train-
ing objectives [21]. The connections between fair representations and fair downstream tasks were proven
both theoretically and experimentally [22]. We follow this line of adversarial fair representation learning
and focus on applying it to CF models.

2.3 Fairness in recommendation systems

Recommendation is one of the most widely used user-centric applications; thus, fairness issues have at-
tracted attention in recommendation systems [23, 24, 36–39]. In recommendation systems, vulnerable
user groups can be treated unequally [40, 41]. According to different principles of group fairness in rec-
ommendation, researchers have defined different fairness goals, and a regularization-based method has
been proposed to reduce discrepancies between disadvantaged and advantaged users [23]. To isolate and



Shao P Y, et al. Sci China Inf Sci December 2022 Vol. 65 222102:4

remove sensitive information from the latent factor embedding space, a fairness-aware tensor-based rec-
ommendation model that involves a sensitive information regularizer has been proposed previously [36].
Rather than directly removing unfairness in the model learning process, a previous study also applied
model reranking in search and recommendation systems [37]. In addition, a fine-tuning approach on
neural CF models was proposed to mitigate gender bias in sensitive item recommendation [38], and a
fairness-aware news recommendation approach with decomposed adversarial learning has also been pro-
posed [12]. Different sensitive attributes are correlated; thus, a method has been proposed to remove
compositional unfairness using a composition of filters with adversarial training techniques [24]. Consid-
ering the graph structure of recommendation systems, a graph-based technique has also been proposed
to ensure fairness [39]. Our work differs from these existing models because we argue that users and
items are correlated collaboratively in recommendations systems, where a user’s sensitive attributes can
be classified easily according to the items that the user interacts with, and we consider how to ensure
fairness in CF while considering the user-item correlation.

3 Proposed framework

Here, we introduce the proposed fairness-aware collaborative filtering (FairCF) framework. We first
discuss preliminaries, followed by a detailed discussion of the overall architecture of FairCF. Then, we
describe the training procedures of the proposed FairCF.

3.1 Preliminaries

Most CF models employ embedding learning techniques to represent users and items in a latent space.
Here, a user’s predicted preferences for an item can be calculated as the inner product between the
user and item representations. Following the representation learning framework for CF, FairCF has two
goals, i.e., maintaining recommendation accuracy to provide high-quality recommendations for users, and
simultaneously improving fairness to ensure that users receive equal treatments. The accuracy goal is
similar to previous CF models, where an accurate embedding matrix E = [EU ,EV ] is learned from user’s
sparse interaction records R. A user’s sensitive information can be exposed from the user’s interactive
items. For any sensitive attribute feature, e.g., gender, we denote the sensitive attribute values of all users
as S = [s1, . . . , su, . . . , sM ] ∈ R

M , where su represents user u’s sensitive attribute value. The fairness
goal focuses on modeling and removing unfairness caused by the sensitive attributes in the embedding
space E.

An adversarial framework has been proposed previously to satisfy the fairness goal by removing sensitive
information from the embedding space [24]. This adversarial framework requires a classical embedding-
based model E in CF that outputs embedding matrix E, a filter module F that takes the original
user embeddings EU = [e1, . . . , eu, . . . , eM ] to filter user embeddings FU = [f1, . . . ,fu, . . . ,fM ], and a
classifier D1 that performs adversarial training to realize fairness. Specifically, the original embedding
module E can take any classical embedding-based CF models, e.g., PMF [5] and LR-GCCF [8]. The F
filter removes sensitive information that is correlated with user embeddings and outputs a filtered user
embedding matrix FU that encourages both recommendation accuracy and recommendation fairness.

When the original embeddings EU are transformed to the filtered embeddings FU , the predicted rating
r̂uv of user u for item v can be calculated as follows:

r̂uv = fT
u ev + bu + bv + µ. (2)

Given the above predicted ratings, any accuracy-based loss can be used, e.g., rating point-wise based
loss [5] and pair-wise based loss [6]. Without loss of generality, we use the point-wise based squared loss,
which is denoted LE :

LE(FU ,EV ) =
1

T

∑

(u,v,ruv)∈(U,V,R)

(ruv − r̂uv)
2, (3)

where u, v, and ruv (i.e., the user u, item v, and corresponding ground truth rating ruv, respectively) are
sampled from training data (U, V,R). In addition, T is the number of interactions in the training data.

The fairness goal is achieved in the adversarial training step. The classifier D1 and filter module F
play a minimax game. Here, F attempts to avoid exposing any sensitive information, and D1 attempts
to correctly infer the sensitive attribute. Via adversarial training of these two modules, studies have
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shown that the filtered embedding distribution of different subgroups tends to be similar with some
conditions [24, 25]. Next, we introduce the adversarial steps. Here, let ŝu be the classification result of
inferring user u’s sensitive attribute:

ŝu = D1(fu). (4)

Let K denote the number of sensitive attribute categories. The sensitive attribute category of each user
u can be represented via one-hot coding as follows: su = [s1u, . . . , s

k
u, . . . , s

K
u ]. Note that we optimize the

classifier D1 using a cross-entropy loss function as follows:

LD1
(FU ,S) = −

1

M

M∑

u=1

K∑

k=1

sku log ŝ
k
u. (5)

Given the recommendation module E , the filter module F , and the sensitive attribute classification
module D1, the learning procedures can be represented as playing a minimax game. We follow the form
of minimax game presented in the literature [25]. Then, the procedures can be formulated as follows:

min
E,F

max
D1

LE(FU ,EV )− βLD1
(FU ,S), (6)

where the first term is the accuracy goal with recommendation accuracy loss, and the second term models
fairness. Here, β is a balancing parameter between fairness and accuracy. The optimal solution of the
minimax game is a balancing point between accuracy and user embedding fairness. When the optimal
solution is acquired, the recommendation system maintains recommendation accuracy and simultaneously
eliminates unfairness from the user embeddings. If β = 0, Eq. (6) degenerates to classical recommendation
accuracy-based approaches. If β → ∞, the results are meaningless because Eq. (6) only considers the
fairness issues, i.e., recommendation accuracy is not considered.

Before introducing the proposed framework, we demonstrate below why the above approach cannot
thoroughly remove sensitive information to ensure fairness. Considering that users and items are corre-
lated in the embedding space, items also represent risks relative to exposing sensitive user information.
For example, on most movie platforms, women prefer romantic movies while men prefer action movies. By
projecting users and items into the same embedding space with any classical CF model, it is easy to find
that action movies are closer to men in the embedding space. Therefore, we could infer a user’s gender
based on the movies they watched in the item embedding space. In other words, due to the collaborative
effect between users and items, sensitive user information is exposed in the item embedding matrix EV .
Items do not have any sensitive label information on the user side; thus, filtering item embeddings at the
same time is a challenge.

3.2 Overall architecture of FairCF

To eliminate sensitive information from item embeddings EV , we can use an item classifier D2 and build
an adversarial loss to ensure that sensitive user information is not exposed from item embeddings. Thus,
item embeddings are also mapped to the filtered space. Naturally, we must map the original embedding
matrix E = [EU ,EV ] to a filtered space F = [FU ,FV ]. Specifically, the filtered item embeddings FV

comprise [fM+1, . . . ,fv, . . . ,fM+N ], where fv denotes item v’s filtered item embedding.
A fair embedding space must satisfy recommendation accuracy and embedding space fairness. As

mentioned in Subsection 3.1, fair user embeddings can be achieved by adding a classifier D1 to infer
sensitive attributes from the user embeddings via adversarial training. Similarly, we propose an item
classifier D2 to predict the sensitive information hidden in item embeddings. Note that we discuss
solving the problem of no item sensitive labels in the following subsection. Here, we assume that all items
have sensitive labels P and introduce FairCF .

As shown in Figure 1, the filter module is applied to both the user and item embeddings learned using
a classical CF model E . Given the filtered embedding space, the predicted rating r̂uv of user u for item
v is calculated in the filtered embedding space as follows:

r̂uv = fT
u fv + bu + bv + µ. (7)

Here, two adversarial modules are applied to eliminate sensitive information from the user and item
embeddings. By taking the filtered embeddings as input, the user classifier attempts to predict the user’s
sensitive labels, and the item classifier attempts to predict the pseudo sensitive labels of the items.
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Figure 1 (Color online) Overall structure of our proposed FairCF.

Then, we define the overall loss function as follows:

Lall = LE(FU ,FV )− βLD1
(FU ,S)− γLD2

(FV ,P ), (8)

where the first term is recommendation accuracy loss, the second term represents the user’s sensitive
classification results, and the third term is the classification results from pseudo item sensitive labels. In
addition, β and γ are balancing parameters that control the classification results. When γ equals zero,
the classification results from pseudo item sensitive labels disappear. Similar to (6), here, we can optimize
the overall optimization function using a minimax game as follows:

min
E,F

max
D1,D2

LE(FU ,FV )− βLD1
(FU ,S)− γLD2

(FV ,P ), (9)

where LD1
(FU ,S) is realized by (5), and LE(FU ,FV ) is employed to improve recommendation accuracy

as follows:

LE(FU ,FV ) =
1

T

∑

(u,v,ruv)∈(U,V,R)

(ruv − r̂uv)
2. (10)

In the following, we emphasize how pseudo item labels are assigned and discuss the design of the loss
function LD2

(FV ,P ).

3.2.1 Pseudo item label calculation

As discussed in Subsection 3.1, items are not labeled with sensitive attribute values. There is no effective
guidance to eliminate sensitive information from the item side. However, users and items are correlated
collaboratively; thus, by passing user sensitive information through the correlated structure, pseudo
item labels are proposed to eliminate sensitive information from the item side. Here, we must select a
deterministic method for pseudo item label prediction. Since we only have user-item behavior data, we
predict the item pseudo labels from the observed user labels. Specifically, we consider the distribution
“item pseudo label” as the percentage of linked users that have this particular sensitive attribute value.
Here, pkv is the probability of the k-th sensitive attribute value of item v. Thus, we define the pseudo
item sensitive label distribution as follows:

pkv =

∑su=k
u∈Bv

1
∑

u∈Bv
1
, (11)

where Bv is the user subset that connects to item v, i.e., the user subset that rated item v. In addition,∑su=k

u∈Bv
1 is the number of users in Bv whose sensitive attribute values are k, and

∑
u∈Bv

1 is the number
of users in Bv. Thus, we can calculate all pseudo item labels for all items, i.e., P = [p1, . . . ,pv, . . . ,pN ] ∈
R

K×N .

We also evaluated other ways to calculate the pseudo item labels, e.g., by adding the rating values as
the relative weight to replace interactions in (11). However, we found that the experimental results with
different settings were similar. In addition, in real-world settings, most users would only show implicit
interaction data rather than the exact rating values. In summary, the proposed pseudo item label
calculation model can be applied to most recommendation scenarios with relatively high effectiveness.
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3.2.2 Item adversarial loss

After defining the pseudo sensitive item labels P , we require an item classifier D2 to eliminate sensitive
information leakage. By taking item embeddings FV from the filter network as input, the item classifier
attempts to guess the pseudo item labels P as follows:

p̂v = D2(fv), (12)

where p̂v represents the predicted values of item v’s pseudo sensitive labels. Note that the pseudo item
label values are continuous in the range of 0 to 1; thus, we use the mean square error loss to optimize the
item classifier D2 as follows:

LD2
(FV ,P ) =

1

N

N∑

v=1

(p̂v − pv)
2 =

1

N

N∑

v=1

(D2(fv)− pv)
2. (13)

By comparing (6) and (9), it appears that the proposed FairCF only implements an additional adversarial
loss. We argue that our main contribution lies in discovering and eliminating unfairness in the bipartite
graph structure.

3.3 Training procedures of FairCF

Here, we describe the detailed training procedures of FairCF. The training procedures can be divided
into two stages. The first stage involves pretraining, which is widely used in adversarial training [42].
Pretraining is required to reduce the convergence time and improve the quality of the generated embed-
dings. Specifically, by selecting a particular recommendation model, e.g., PMF [5] or LR-GCCF [8], we
utilize (10) to pretrain the recommendation model followed by pretraining the user and item classifiers
to ensure that they have some ability to infer sensitive labels. We then train the overall framework and
stop model learning when both the performance of user and item classifiers no longer vary. The detailed
training process is shown in Algorithm 1.

Algorithm 1 Detailed training procedure of FairCF

Require: Users U ; items V ; interactions R; user sensitive labels S.

1: Generate pseudo item labels P for all items (Eq. (11));

2: Randomly initialize all module E, F , D1, D2’s parameters ΘE , ΘF , ΘD1
, ΘD2

;

3: repeat

4: Sample a batch of training data, including user-item pairs and corresponding interactions and sensitive labels (u, i, ruv ,

su,pv);

5: for Each pair of input (u, i, ruv , su,pv) in the batch do

6: Compute the recommendation loss LE (Eq. (10));

7: Optimize ΘE , ΘF to minimize recommendation loss LE ;

8: Compute the user adversarial loss LD1
(Eq. (5));

9: Optimize ΘD1
to minimize user adversarial loss LD1

;

10: Compute the item adversarial loss LD2
(Eq. (13));

11: Optimize ΘD2
to minimize item adversarial loss LD2

;

12: end for

13: until pretraining stops.

14: repeat

15: Sample a batch of training data, including user-item pairs and corresponding interactions and sensitive labels (u, i, ruv ,

su,pv);

16: Fix ΘD1
, ΘD2

and compute the overall loss function Lall (Eq. (8));

17: Optimize ΘE , ΘF to minimize the overall loss Lall;

18: Fix ΘE , ΘF and compute the user adversarial loss LD1
(Eq. (5));

19: Optimize ΘD1
to minimize user adversarial loss LD1

;

20: Fix ΘE , ΘF and compute the item adversarial loss LD2
(Eq. (13));

21: Optimize ΘD2
to minimize item adversarial loss LD2

;

22: until Convergence.

4 Experiments

Here, we first describe the experimental setup and then introduce our proposed recommendation fairness
metric. Then, we present the experimental results and demonstrate that the proposed FairCF outperforms
state-of-the-art algorithms. Finally, we present detailed analyses to facilitate further discussions.
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Table 1 Statistics of the datasets

Datasets Users Items Ratings Density (%)

MovieLens-100K 943 1682 100000 6.30

MovieLens-1M 6040 3706 1000209 4.4684

Lastfm-360K 359347 292589 17559443 0.0167

4.1 Experimental setup

4.1.1 Datasets

In this evaluation, three datasets were considered to evaluate model performance.

•MovieLens-100K. This dataset is widely used for movie recommendation [43]. The dataset MovieLens-
100K includes 100000 ratings from one to five rated by 943 users for 1682 movies. We randomly selected
70% of the triplets as training data and 10% for validation. The remaining 20% of the triplets were used
as test data. The user demographic data include gender, age, and occupation.

• MovieLens-1M. This dataset includes movie recommendation provided by MovieLens users [43]. As
shown in Table 1, the dataset comprises nearly one million ratings from one to five rated by 6040 users
on approximately 4000 movies. Here, we randomly selected 70% of the triplets as training data and 10%
for validation. The remaining 20% of the triplets were used as test data. The MovieLens-1M dataset
includes user demographic data (age, zip code, gender, and occupation) and movie metadata (title and
genres).

• Lastfm-360K. This dataset contains triplets (user, artist, play times) collected from the Last.fm
API [44]. On top of interactive information, it comprises nearly 360000 users and approximately 290000
artists. Note that the Lastfm-360K dataset does not record ratings directly; thus, we change times into
ratings using a log, followed by mapping the ratings into integers from 1 to 5. We split the triplets at a
ratio of 7:1:2. Detailed statistics for this dataset are shown in Table 1. The Lastfm-360K dataset includes
user demographic data (gender, age, country, and signup date).

4.1.2 Baselines

We compare our proposed FairCF with the following baselines:

• PMF. This is a classical CF model in the recommendation field [5].

• LR-GCCF. This is a graph-based recommendation model that treats the user-item interaction as a
bipartite graph and simplifies the graph convolution aggregation operation [8]. Note that we modified this
model that was originally used in implicit feedback to explicit feedback. Specifically, for the MovieLens-1M
dataset, we replaced the concatenation operation with the addition operation when combining different
layers of embeddings. In the Lastfm-360K dataset, we further utilized a layer-attention module to learn
different weights when adding different user (item) embeddings from different layers to obtain the best
accuracy.

• NIPS Non and NIPS Pop. This is a regularization-based method to reduce the impact of gender on
recommendation results [23]. This approach considers different fairness regularization terms for different
forms of unfairness. Specifically, we selected nonparity and population parity regularization, which are
denoted NIPS Non and NIPS Pop, respectively. Note that these models are defined on PMF; thus, we
only compared NIPS Non and NIPS Pop to PMF-based frameworks.

• ICML 2019. This is a state-of-the-art adversarial learning-based method to achieve fairness con-
straints [24]. Note that this baseline was introduced in Subsection 3.1.

• FairCF NIC. This is a simplified version of the proposed framework implemented to investigate the
effectiveness of the item classifier D2 in FairCF . This simplified version of FairCF has no item classifier
D2, i.e., γ = 0 in (8).

In summary, PMF and LR-GCCF are basic CF models that do not consider fairness. To explicitly
introduce fairness constraints, NIPS Non and NIPS Pop remove unfairness by adding fairness regular-
ization terms. In addition, ICML 2019 attempts to eliminate sensitive information for user embeddings
using adversarial training. FairCF NIC is a simplified version of the proposed FairCF to validate its
effectiveness.
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Table 2 Hyperparameters of FairCF

Datasets Batchsize
PMF LR-GCCF Times for Times for Times for

β γ β γ training E, F training D1 training D2

MovieLens-100K 32768 10 20 10 20 1 10 10

MovieLens-1M 8192 10 20 10 10 1 10 20

Lastfm-360K 1048576 5 10 40 80 1 20 20

4.1.3 Implementation details

Our experiments were implemented on pytorch-1.6.0. For hyperparameters, we set the matrix dimension
D = 64 and initialize the embedding matrix E with the normal distribution N (0, 0.012). In addition,
Adam was employed as the optimization method with a learning rate of 0.005. The coefficient of the
regularization term was 0.001. We set different values for balancing parameters β and γ on all three
datasets (MovieLens-100K, MovieLens-1M, and Lastfm-360K). We set different values for balancing pa-
rameters β and γ, and times of training E , F , D1, D2 modules during one epoch in FairCF varies on
different datasets. These hyperparameters are shown in Table 2. The filter module F and two classifiers
D1, D2 were implemented using multilayer perceptrons (MLP) with two, four, and four layers, respec-
tively. Here, the filter module F served as a mapping function from the original embedding space to the
target space without changing the embedding size.

For the sensitive attribute, we followed [21–23] and selected gender as the sensitive attribute because
gender is an easy-to-collect attribute that represents information sensitivity in the real world.

4.2 Evaluation metrics

We evaluated the recommendation accuracy according to the root mean square error (RMSE) metric,
which metric measures the differences between ground truth ratings and the predicted ratings. Note that
smaller RMSE values indicate better recommendation accuracy.

Due to a lack of unified fairness metrics in the recommendation field, the performance acquired on a
newly trained classifier is typically used to evaluate the fairness of user representations [12,24]. Here, we
split users at a ratio of 8:2 and trained the classifier on data from 80% of the users. We evaluated the
classifier performance of the remaining 20% of the users. As mentioned previously, we selected a binary
sensitive attribute (i.e., gender): therefore, we used the area under the curve (AUC) metric to represent
how much gender information remained in the user embeddings. Note that a smaller AUC value indicates
better performance in terms of user embedding fairness.

In addition, we also considered a widely adopted group fairness metric of statistical parity [23] to mea-

sure the differences in the predicted ratings of different groups, i.e., 1/N
∑N

j=1 ||Eu∈U0
[r̂uv]−Eu∈U1

[r̂uv]||,
where U0 and U1 denote different user groups divided by the binary sensitive attribute (gender). The
recommendation task is a ranking-oriented task; thus, the goal is to predict the top ranked items as
accurately as possible. Therefore, in addition to measuring group fairness based on all predicted ratings,
we also modified the statistical parity onto the top-K ranked items as follows:

Fairness@K =

∑N
j=1 |

1
|U0|

∑r̂ij∈topK
i∈U0

r̂ij −
1

|U1|

∑r̂ij∈topK
i∈U1

r̂ij |

N
. (14)

Some may argue that as different groups of users have different rating preferences, it is better to use
group-based metrics that measure recommendation quality between different user groups. If we use rtest

to denote a (user, item, rating) triplet that belongs to testing set, the absolute unfairness [23] can be

expressed as follows: 1/N
∑N

j=1 ||Eu∈U0
[r̂testuv ]−Eu∈U0

[rtestuv ]|−|Eu∈U1
[r̂testuv ]−Eu∈U1

[rtestuv ]||. However, this
technique does not make sense in our specific case. Assume that absolute unfairness is also modified onto
the top-K ranked items. In this case, we can only use the intersection of the top-K ranked items and
the testing data to calculate recommendation performance, formulated as 1/N

∑N
j=1 ||Eu∈U0

[r̂test∩topK
uv ]−

Eu∈U0
[rtest∩topK

uv ]|− |Eu∈U1
[r̂test∩topK

uv ]−Eu∈U1
[rtest∩topK

uv ]||. Note that the number of ratings that satisfy
both topK and test is very sparse, which leads to inaccurate estimation. Therefore, we did not take equal
performance as a metric in our case.

Practically, we selected Fairness@50 and Fairness@all to evaluate recommendation fairness, where a
smaller Fairness value indicates better performance in terms of fairness in the recommendation results. We
calculated Fairness@all and Fairness@50 for all user and item pairs that do not appear in the training data



Shao P Y, et al. Sci China Inf Sci December 2022 Vol. 65 222102:10

Table 3 Performance on the MovieLens-100K dataset

Baselines
Base PMF model Base LR-GCCF model

RMSE AUC Fairness@50 Fairness@all RMSE AUC Fairness@50 Fairness@all

PMF/LR-GCCF 0.9333 0.6667 0.148 0.0750 0.9277 0.7414 0.1712 0.0792

NIPS Non 0.9423 0.8389 0.1825 0.0572 – – – –

NIPS Pop 0.9401 0.9564 0.3815 0.1625 – – – –

ICML 2019 1.044 0.5880 0.138 0.0575 0.0.9969 0.6669 0.1156 0.0516

FairCF NIC 1.019 0.5723 0.1327 0.0706 0.9875 0.6617 0.1003 0.0433

FairCF 1.061 0.5707 0.1213 0.0404 0.9956 0.6358 0.0713 0.0424

Table 4 Performance on the MovieLens-1M dataset

Baselines
Base PMF model Base LR-GCCF model

RMSE AUC Fairness@50 Fairness@all RMSE AUC Fairness@50 Fairness@all

PMF/LR-GCCF 0.8657 0.7457 0.1612 0.0678 0.8554 0.7956 0.1566 0.0802

NIPS Non 0.8696 0.7481 0.6427 0.0317 – – – –

NIPS Pop 0.8693 0.8994 0.9034 0.1524 – – – –

ICML 2019 0.9219 0.5891 0.1562 0.0202 0.9150 0.5786 0.1392 0.0206

FairCF NIC 0.8998 0.5226 0.1439 0.0226 0.8992 0.6064 0.1297 0.0357

FairCF 0.9279 0.5221 0.1321 0.0158 0.9012 0.5719 0.1169 0.0084

Table 5 Performance on the Lastfm-360K dataset

Baselines
Base PMF model Base LR-GCCF model

RMSE AUC Fairness@50 Fairness@all RMSE AUC Fairness@50 Fairness@all

PMF/LR-GCCF 0.6712 0.6271 0.1158 0.1447 0.6698 0.6280 0.0431 0.1629

NIPS Non 0.6966 0.6725 0.1489 0.0594 – – – –

NIPS Pop 0.6865 0.6506 0.1772 0.1228 – – – –

ICML 2019 0.6910 0.6198 0.1280 0.1726 0.6915 0.5567 0.0243 0.1396

FairCF NIC 0.6840 0.6069 0.0898 0.1662 0.6879 0.5880 0.0306 0.1362

FairCF 0.7094 0.5587 0.0469 0.1661 0.7072 0.5284 0.0112 0.1301

for the MovieLens-1M and MovieLens-100K datasets. However, for the Lastfm-360K dataset, nearly 105
billion predicted unobserved interactions must be calculated. Thus, in consideration of time and memory
costs, we only evaluated Fairness@all and Fairness@50 with 10000 selected users and 2500 items in the
Lastfm-360K dataset.

4.3 Overall performance

The proposed FairCF framework is a flexible framework with any base recommendation model; we con-
sidered two base recommendation models, i.e., PMF and LR-GCCF. Tables 3–5 show the results obtained
on the three datasets. Several observations can be made from the results shown in these three tables.
First, the basic models demonstrated the best performance in terms of recommendation accuracy (i.e.,
RMSE); however, compared to the models with the fairness constraints, the basic models showed the
worst performance in terms of the fairness metrics because realizing fairness involves removing sensitive
information from the CF models and reducing recommendation accuracy.

Second, we found that NIPS Non and NIPS Pop showed the worse performance in terms of AUC com-
pared to the other fairness models because they do not remove sensitive information from the embeddings,
i.e., they directly eliminate the differences between all women’s and men’s interactions in the training
data. Therefore, they only showed good performance in terms of Fairness@all among the considered
fairness metrics. Note that NIPS Non achieved better fairness results than NIPS Pop because nonparity
regularization (which is the key concept in NIPS Non) is closer to Fairness@K and Fairness@all than
population parity (which is the key concept in NIPS Pop) [23].

Third, among the models with fairness constraints, the proposed FairCF demonstrated the best per-
formance in terms of the fairness metrics. Compared to NIPS Non and NIPS Pop, FairCF showed better
performance in terms of fairness of the user embeddings (AUC) and the fairness of the recommendation
results (Fairness@50). On the Lastfm-360K dataset, FairCF based on PMF failed to perform well in
terms of Fairness@all because most users tend to give higher or lower values in the Lastfm-360K dataset.
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Figure 2 (Color online) Performance of Fairness@K with different K values. (a) Performance on MovieLens-100K dataset;

(b) performance on MovieLens-1M dataset; (c) performance on Lastfm-360K dataset.

Thus, PMF tended to better optimize bu and bv to realize better recommendation accuracy. However, we
only have fairness constraints on embeddings: thus, for low ratings on noninteractive items, unfairness
appears to be influenced by bu and bv. Table 5 shows that Fairness@50 (i.e., calculating only the high
predicted ratings for each user) still exhibits the better performance of both FairCF and FairCF NIC on
the Lastfm-360K dataset.

Fourth, we compared the proposed FairCF and FairCF NIC. As shown in Tables 3–5, the proposed
FairCF achieved better results in terms of the fairness metrics with a decrease of less than 5% RMSE
compared to FairCF NIC. These results demonstrate that the item classifier D2 with the pseudo item
labels is effective relative to achieving fairness with CF-based models. There is a balance between fairness
and recommendation accuracy. Thus, if a given amount of unfairness can be tolerated to improve accuracy,
then FairCF NIC can also be adopted.

Finally, we compared FairCF based on PMF and FairCF based on LR-GCCF, and we found that the
LR-GCCF-based FairCF obtained better performance in terms of RMSE, Fairness@50, and Fairness@all.
The reason for this is that the graph-based LR-GCCF model can model high-order correlations in a
graph structure to alleviate the sparsity issue, and this model discovers more hidden features related to
sensitive features. In addition, LR-GCCF has a better ability to generate embeddings that satisfy fairness
requirements in adversarial learning; thus, the training process is more stable.

4.4 Detailed model analyses

LR-GCCF demonstrated better recommendation accuracy than PMF; thus, we selected LR-GCCF as
the base model in the following detailed model analyses.

Performance of Fairness@K with different K values. We were interested in observing Fair-
ness@K changes as K changes and whether FairCF can retain better performance in terms of Fairness@K.
Here, we set K of Fairness@K in the range [10, 20, 30, 40, 50] and calculated Fairness@all on four collab-
orative filtering models (i.e., LR-GCCF, ICML 2019, FairCF NIC, and FairCF) and three datasets. As
shown in Figure 2, the proposed FairCF demonstrated the best fairness performance in all cases, which
indicates that FairCF is both stable and effective.
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Figure 3 (Color online) Accuracy and fairness results obtained under different settings for parameters β and γ on the MovieLens-

1M dataset. (a) Accuracy and AUC; (b) accuracy and Fairness@50.

0.72

0.74

0.76

0.78

0.80

0.82

A
U

C

0

0.05

0.10

0.15

0.20

0.25

F
ai

rn
es

s@
5
0

AUC
Fairness@50

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

0.725

0.730

0.735

0.740

0.745

0.750

A
U

C

0

0.05

0.10

0.15

0.20

0.25

F
ai

rn
es

s@
5
0

AUC
Fairness@50

Epoch Epoch

(a) (b)

Figure 4 (Color online) Different fairness metrics with different epochs on the MovieLens-1M dataset. (a) Training process of

PMF; (b) training process of LR-GCCF.

Trade-off between recommendation accuracy and fairness. Balancing hyperparameters β and
γ allowed us to control the trade-off between recommendation accuracy and fairness. As mentioned
previously, parameters β and γ were set to 10 (Subsection 4.3) on the MovieLens-1M dataset. We
recorded the results obtained on the MovieLens-1M dataset with different values for balancing parameters
β and γ in Figure 3. To facilitate a better comparison, we also set the same values for β and γ.
Specifically, we conducted experiments and compared the results when the β and γ values were varied
in the range [1, 10, 50, 100, 200]. Here, we used the RMSE metric to indicate accuracy and (Fairness@50,
AUC) to represent fairness. In Figure 3, the blue and red horizontal lines represent accuracy and fairness,
respectively, for LR-GCCF. Note that these lines are not related to β and γ. In terms of FairCF, Figure 3
shows that larger values for the balancing parameters β and γ resulted in better performance in terms
of fairness and worse performance in terms of accuracy.

Connections between AUC metric and Fairness@K metrics. Two types of fairness metrics
were considered in our experiments, i.e., AUC based on the user embedding and Fairness@K based on the
recommendation results. We wondered whether a relationship exists between these two metrics. Here,
the intuitive idea is that if AUC tends to be 0.5, the embeddings of two genders will be in the same
data distribution; thus, Fairness@K tends to be 0. In Figure 4, we recorded these fairness metrics for
the MovieLens-1M obtained every five epochs with the baseline PMF and LR-GCCF models. Several
observations can be made from Figure 4. First, AUC and Fairness@50 increased because the recom-
mender systems utilized gender information to improve accuracy when training begins. Second, as the
recommendation models began to overfit the training data, Fairness@50 and AUC decreased with the
PMF and LR-GCCF models.

Finally, we observed that these two metrics will not decrease as small as a random situation, e.g.,
AUC decreases to 0.5 or Fairness@50 decreases to 0, because gender information still has an impact on
recommendation models. We found that AUC and Fairness@50 demonstrate a similar tendency, i.e., the
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Table 6 Performance with multiple sensitive attributes

Baselines Attribute
Base PMF model Base LR-GCCF model

RMSE AUC Micro-F1 RMSE AUC Micro-F1

PMF/LR-GCCF None 0.8657 0.7457 0.3956 0.8554 0.7956 0.4031

ICML 2019 Gender 0.9219 0.5891 0.3518 0.9150 0.5786 0.3591

ICML 2019 Age 0.9346 0.5901 0.3493 0.9230 0.6781 0.3501

ICML 2019 Multiple 0.9371 0.5571 0.3485 0.9257 0.5640 0.3493

FairCF Gender 0.9279 0.5221 0.3543 0.9012 0.5719 0.3526

FairCF Age 0.9246 0.6013 0.3501 0.9035 0.6351 0.3493

FairCF Multiple 0.9301 0.5163 0.3469 0.9126 0.5572 0.3485

degree of response to unfairness varies.
Extension to multiple sensitive attributes. As mentioned in Section 1, our primary contribution

lies in discovering the correlations of users and items for fairness modeling in recommendation systems
and proposing a simple solution to address this issue. The experiments conducted on a single sensitive
attribute (i.e., gender) demonstrated the superiority of the proposed technique. We also extend the
proposed FairCF to multiple sensitive attributes to prove its effectiveness. Here, by utilizing a composition
of filters F = [Fc]Cc=1, we transformed the embeddings based on C sensitive attributes [24,39]. The filtered

embeddings are represented as fi =
∑C

c=1
Fc(ei)

C
, where D1 = [Dc

1]
C
c=1 and D2 = [Dc

2]
C
c=1 represent user

adversaries and item adversaries, respectively. In addition, Sc and P c represent user sensitive labels
and pseudo item labels for sensitive attribute c, respectively. As a result, the minimax game can be
formulated as follows:

min
E,F

max
D1,D2

LE(FU ,FV )−
C∑

c=1

[βcLDc
1
(FU ,S

c) + γcLDc
2
(FV ,P

c)], (15)

where βc and γc are balancing parameters for sensitive attribute c.
Following (15), we conducted further experiments on the MovieLens-1M dataset to evaluate perfor-

mance with multiple sensitive attributes. Here, we treated the gender and age attributes as sensitive
attributes. In other words, the fairness-aware models under multiple sensitive attributes simultaneously
utilized a gender filter and age filter to eliminate gender and age information in an adversarial manner.
Following [24, 39], we randomly selected 80% of the users, trained a classification model by taking the
learned representations of the 80% of users, and calculated the classification performance on the 20% test
users to measure the fairness performance.

In addition, we used AUC for the binary sensitive attribute gender. For the sensitive attribute age,
following previous studies [24, 39], we used micro-averaged F1, which is often used for evaluating multi-
class classification. Note that smaller AUC or micro-averaged F1 values indicate less information leakage
for the corresponding sensitive attribute and better performance on fairness, respectively. The hyperpa-
rameters for gender are listed in Table 2. For the hyperparameters for age, we set balancing parameters
βage = 1 and γage = 20. In addition, we set times of (Eage,Fage), Dage

1 , and Dage
2 during one epoch to

one, 40, and 40, respectively.
The results are shown in Table 6. As can be seen, the proposed FairCF was able to handle multiple

sensitive attributes and outperformed ICML 2019 in terms of both fairness and accuracy. Two important
observations can be taken from the results shown in Table 6. First, the models that focus on gender (age)
fairness also performed better on age (gender) fairness than the models without fairness goals (i.e., PMF
and LR-GCCF). Second, the fairness-aware models under the multiple sensitive setting demonstrated
better fairness results compared to the base models. These findings indicate that the different sensitive
attributes (i.e., age and gender) are correlated, and the multiple sensitive attributes setting can exploit
the correlations between different sensitive attributes to eliminate more sensitive information.

5 Conclusion and future work

In this paper, we have proposed the FairCF framework for fairness consideration in CF-based recom-
mendation systems. We have argued that as user and item embeddings in CF models are collaboratively
correlated, only eliminating unfairness at the user embeddings is not satisfactory. Thus, we designed fair-
ness constraints in the fair embedding space, and user and item classifiers were utilized in the proposed
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framework to fit the fairness constraints. Experimental results obtained on three real-world datasets
clearly demonstrate that our proposed FairCF achieved over 5% improvements on fairness with less than
4% decrease on recommendation accuracy, compared to other fairness-aware CF models (NIPS Non,
NIPS Pop, ICML 2019).

In the future, an important problem must be addressed: most existing studies related to fairness have
ignored modeling the correlations between different sensitive attributes. Such correlations can be valuable
in many situations related to fairness, e.g., existing studies rarely considered the practical scenario of
missing values for sensitive attributes. We consider that it would be promising to infer missing values
with correlations to address this problem. Thus, extending the proposed framework by mining attribute
correlations is a natural direction for future work.
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