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Abstract—Social recommendation provides an auxiliary social network structure to enhance recommendation performances. By
formulating user-user social network and user-item interaction graph, modern social recommendation architecture is built on learning
user and item embeddings into Euclidean space with graph convolution operations. However, the Euclidean space suffers structure
distortion when representing the nature power-law distribution of graphs, leading to sub-optimal results for graph based social
recommendation. Recently, some studies have explored the alternative of graph embedding learning into hyperbolic space, which can
preserve the hierarchy of real-world graphs. However, directly applying current hyperbolic graph embedding models for social
recommendation is non-trivial as two challenges: network heterogeneity and social diffusion noise. First, due to the semantic gap
existing between social networks and user-item interactions, how to tackle the heterogeneity issue of social recommendation under
hyperbolic formulation? Second, explicit modeling of social diffusion easily introduces noise for user preference learning, especially for
those active users with amounts of interactions. To tackle the above challenges, in this paper, we propose a Hyperbolic Graph Learning
based Social Recommendation (HGSR) model. Firstly, we exploit social structure with hyperbolic social embedding pre-training, which
could preserve the hierarchical properties of social networks. Secondly, we construct the heterogeneous graph based on user-item
interactions and social networks, then treat the pre-trained social embeddings as an additional feature input for user preference
learning. Such that, we combine explicit heterogeneous graph learning and implicit feature enhancement for the hyperbolic social
recommendation, which can well tackle heterogeneity and social noise issues. We conduct empirical studies on four datasets, and
extensive experiments demonstrate the effectiveness of our proposed model compared to state-of-the-art baselines. We release the
source code at: https://github.com/yimutianyang/HGSR.

✦

1 INTRODUCTION

Recommender systems provide personalized sugges-
tions by modeling users’ preferences. As one of the basic
paradigms, Collaborative Filtering (CF) has been widely
deployed in recommendation systems, which learn users’
unknown preferences based on user-item historical inter-
actions [36], [14], [34]. Despite the wide applicability, the
performance of CF is still far from satisfactory due to the
limited user interaction data. With the ubiquitous social net-
works, social recommendation has emerged as an important
research technique for personalized services. Social recom-
mendation utilizes the additional user-user social networks
to alleviate interaction data sparsity and improve recom-
mendation performances [40], [10]. The underlying rationale
is that users are influenced by their corresponding ego-
centric social network, such that socially connected users
have similar preferences [1].

Following the theory of social homogeneity and social
influence [1], [2], [58], early works usually focus on first-
order social connections, such as designing social regular-
ization [27] or modeling social neighbor influence [10]. Re-
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cently, inspired by the great representation ability of graph
neural networks, graph-based recommendation methods
have achieved state-of-the-art performances [44], [12], [47].
Graph-based CF methods iteratively update user and item
representations by propagating the collaborative signals
with graph convolutions [44], [6], [12], [53]. Extending
CF models, graph-based social recommendations enhance
representations from both the social diffusion and interest
propagation [7], [47], [46], [57]. E.g., DiffNet++ proposes to
learn user representations by attentively aggregating neigh-
bors from both social network and user-item interaction
graph [46].

Despite the performance improvement, we argue that
current graph-based social recommendation models are still
far from satisfactory. The reason is that all the above graph-
based recommendation models embed nodes into Euclidean
space with Graph Convolutional Networks(GCNs) [12],
[46], while neglecting the geometry properties hidden in
graphs. As well recognized by sociologists, real-world
graphs exhibit the power-law distribution [31]. For example,
we illustrate the node degree distribution of a real-world
social recommendation dataset Epinions in Fig.1(a-c), and
the detailed statistics of Epinions are described in Table
4. As shown in this Fig, the degree distribution of nodes
from the social graph and that of the user-item bipartite
graph all show the power-law distribution. The power-law
distribution is a consequence of tree-like hierarchical organi-
zation, showing that a small group of nodes organized in a
hierarchical manner into increasingly large groups [32], [29].
By modeling the graph structure into Euclidean space, the
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Fig. 1. (a-c): Illustration of the degree distribution of user-user social network, and user-item interaction graph on Epinions dataset.
(d): Two-dimensional hyperbolic space visualization.

volume inside a Euclidean ball with a radius r only grows
quadratically (i.e., the area of the sphere is πr2), which leads
to high structure distortion for embedding representation.

In contrast to Euclidean space, hyperbolic geometry has
an area that is exponential with radius r, which provides a
nice alternative to model underlying hierarchical structure
data [29], [9], [19]. As illustrated in Fig.1(d), each node is
represented with a blue dot in the two-dimensional hyper-
bolic space. As the radius r increases, the capacity of the
nodes increases exponentially. Then, the tree-structured hi-
erarchical property of node distributions can be well embed-
ded in the hyperbolic space. Recently, researchers propose
to model graph-based recommendations with hyperbolic
geometry [37], [52], [51], [21], [41]. These models com-
bine the complementary advantage of the expressiveness of
GCNs and the hyperbolic geometry of node representation,
showing better performance than purely graph embedding
learning in the Euclidean space. In this paper, we study
the problem of hyperbolic graph learning for social recom-
mendation, which is non-trivial due to the following two
challenges. First, due to the semantic gap existing between
social networks and user-item interactions, how to tackle
the heterogeneity issue of social recommendation under
hyperbolic formulation? Besides, explicit modeling of social
influence with graph convolution easily introduces noise for
preference learning, especially for those active users with
amounts of interactions.

In this paper, we propose a Hyperbolic Graph Learn-
ing based Social Recommendation (HGSR) model to tackle
heterogeneity and social noise for the hyperbolic social
recommendation. Technically, HGSR consists of two main
stages: hyperbolic social pre-training and hyperbolic pref-
erence learning. Specifically, we first exploit social structure
properties through a hyperbolic social pre-training module,
which is optimized to reconstruct social networks. The hy-
perbolic social pre-training is designed to preserve the social
hierarchical properties. Secondly, we design a social pre-
training enhanced hyperbolic heterogeneous graph learning
module, that formulates users’ social network and user-item
interactions as a heterogeneous graph, then treats the pre-
trained social embeddings as an additional feature input
for graph learning. Such that, we combine explicit hetero-
geneous graph learning and implicit feature enhancement
to tackle the heterogeneity and social noise issues in hyper-
bolic social recommendation. We conduct experiments on
four public datasets, extensive experimental results show
that our proposed HGSR can significantly improve recom-

mendation performances. Our main contributions can be
summarized as follows:

• We formulate the social recommendation task un-
der hyperbolic space learning, and propose a novel
Hyperbolic Graph Learning based Social Recommenda-
tion (HGSR) model.

• We design a hyperbolic social pre-training module to
preserve the social structure as features, and tackle
the social recommendation from both explicit het-
erogeneous graph learning and implicit feature en-
hancement.

• Extensive experimental results on four real-world
datasets clearly demonstrate the effectiveness of the
proposed HGSR model, including high performance,
generalization of the pre-trained feature, and appli-
cability to various sparsity users.

2 PRELIMINARIES

2.1 Hyperbolic Social Recommendation

Problem Statement. In a social recommendation platform,
there are two kinds of entities: a user set U (|U | = M )
and an item set V (|V | = N ). Two kinds of behaviors
are available in this scenario: user-item interactions and
user-user social connections. Considering the most common
recommendation scenarios are implicit feedback (such as
click, like and purchase), we use R ∈ RM×N to denote user-
item interaction matrix, where rai = 1 if user a interacts
with item i, otherwise it equals 0. Besides, user-user social
network is denoted by S ∈ RM×M , where sba = 1 if user
a follows user b, otherwise it equals 0. Given the user-item
interaction matrix R ∈ RM×N and user-user social network
S ∈ RM×M . The goal of hyperbolic graph based social
recommendation is to predict users’ unknown preferences:
R̂ = f(R,S), where the function f(·) learned in hyperbolic
space. The main notations are summarized in Table 1.

Schema Illustration. As illustrated in Fig. 2, we first de-
scribe the schema of the proposed hyperbolic social recom-
mendation from implicit and explicit modeling. The left is
the implicit modeling process, given user-user social matrix
S as input, we first use hyperbolic GNNs to pretrain social
embeddings: P = HPre(S), where HPre(·) denotes the hy-
perbolic pre-training function. Then, the pre-trained social
embeddings can be viewed as additional features to enhance
the recommender. The right is the explicit modeling process,
given user-user social matrix S and user-item interaction
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Fig. 2. Flow chart of hyperbolic graph social recommendation with implicit and explicit modeling. (a) Implicit modeling: we design the hyperbolic
social pertaining module to extract social embeddings, then feed social embeddings as an additional feature to enhance recommender; (b) Explicit
modeling: we construct the heterogeneous graph according to social network and interaction matrix, then perform social influence diffusion and
interest propagation with hyperbolic graph learning.

TABLE 1
Mathematical Notations.

Notation Description
U Userset, |U | = M
V Itemset, |V | = N

R ∈ RM×N Interaction matrix
S ∈ RM×M Social matrix

G = {U ∪ V,S,R} Heterogeneous graph

Hd
k

Hyperbolic space (Riemannian manifold
with a curve k and a dimension d)

ToHd
k Tangent space with an original point o

Z0 Initialized social embedding matrix
in tangent space

P
Pre-trained social embedding matrix

in hyperbolic space

H0 Fused user embedding matrix
in tangent space

Q0 Initialized item embedding matrix
in tangent space

U, V Final user and item embedding matrices
in hyperbolic space

matrix R, we formulate these two kinds of behavior data as
a heterogeneous graph G = {U ∪ V ,S,R}. Borrowing the
strength of capturing the hierarchical structure of hyperbolic
learning [37], [4], we model the interest propagation and so-
cial influence diffusion process by hyperbolic heterogeneous
graph learning. In this work, we argue that single implicit or
explicit modeling is inefficient for social recommendation.
Firstly, implicit modeling extracts general social features
to preserve the social structure, while failing to capture
the hidden recommendation patterns like user-user-item.
Secondly, explicit graph diffusion modeling assumes that
each social neighbor contributes to the user’s interaction
behavior. Although social information can supplement the
sparse interactions, social diffusion usually disturbs active
users’ preference learning [47], which can also be verified in
our experiments (Section 4.3). To this end, we combine im-
plicit and explicit modelings, and propose HGSR for social
recommendation. Next, we introduce the basic hyperbolic
formulation in this paper.

2.2 Lorentz Formulation
Due to the high efficiency and stability, we select the Lorentz
formulation to learn hyperbolic embeddings [30]. Here, we

give a brief introduction to the correlated definitions and
properties of the used Lorentz formulation.

Hyperbolic Manifold and (Euclidean) Tangent Space.
Hyperbolic space is defined as a Riemannian manifold Hd

k,
where d is the space dimension and k is the curvature
parameter (curvature c = −1/k):

Hd
k = {x ∈ Rd+1 : ⟨x,x⟩L = −k,x0 > 0}, (1)

where ⟨, ⟩L denotes Lorentz inner product, which is defined
as:

⟨x,y⟩L = −x0y0 +

d∑
i=1

xiyi. (2)

Furthermore, given an original point o ∈ Hd
k, we can define

the corresponding tangent space (Euclidean space) ToHd
k as

the first-order approximation of Hd
k around point x:

ToHd
k = {v ∈ Rd+1 : ⟨v,o⟩L = 0}. (3)

Hyperbolic Distance and Mapping Function. Given
any point pair x,y in hyperbolic space Hd

k, the distance is
computed as follows:

dL(x,y) =
√
karcosh(−

⟨x,y⟩L
k

). (4)

After defining hyperbolic space Hd
k and tangent space ToHd

k,
we next introduce the mapping functions between these
two spaces. Specifically, the exponential and the logarithmic
map function to map points between tangent space and
hyperbolic space, which is defined as follows:

expx(v) = cosh(
||v||L√

k
)x+

√
ksinh(

||v||L√
k

)
v

||v||L
, (5)

where ||v||L =
√
⟨v,v⟩L is the Lorentz normalization of

v. The expx(∗) operation maps point from tangent space
to hyperbolic space. Correspondingly, the logx(∗) operation
maps point from hyperbolic space to tangent space:

logx(y) =
√
karcosh(−

⟨x,y⟩L
k

)
y + 1

k
⟨x,y⟩Lx

||y + 1
k
⟨x,y⟩Lx||

. (6)

In this paper, we refer existing hyperbolic recommenda-
tion works [37], [52], [51], set a fixed curvature to -1 (k = 1),
and select o = [−1, 0, 0, ..., 0] as the original point for
inference.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4
2

Overall Architecture

Layer 1 Layer 2 Layer L

Social Graph Encoder

Tangent Space

𝒍𝒐𝒈𝒐(∗) 𝒆𝒙𝒑𝒐(∗)

𝐻𝑘
𝑑 𝐻𝑘

𝑑 𝒅𝑳

Link Prediction

Users

Items

Fusion

𝒍𝒐𝒈𝒐(∗) Heterogeneous Graph Encoder 𝒆𝒙𝒑𝒐(∗)

Layer 1 Layer 2 Layer L

𝐻𝑘
𝑑 𝐻𝑘

𝑑 𝒅𝑳

Hyperbolic Social Pre-training Module

Social Embeddings

Hyperbolic Preference Learning Module

Pre-trained Hyperbolic Social Embeddings

Input Data
Preference Prediction

Item Embeddings

Social links

Interactions

User Embeddings

Tangent Space

Fig. 3. The overall framework of our proposed HGSR model, which consists of two modules. The upper part is the hyperbolic social pre-training
module and the bottom part is the hyperbolic preference learning module.

3 METHODOLOGY

In this section, we introduce our proposed Hyperbolic Graph
Learning based Social Recommendation (HGSR) method. We
first present the overall architecture, followed by the speci-
fication of each module. After that, we present the objective
function for model optimization. Finally, we discuss our
model from space and time complexity, respectively.

3.1 Overall Architecture
As illustrated in Fig. 3, our model consists of two modules:
hyperbolic social pre-training module and hyperbolic pref-
erence learning module. Among them, social pre-training
module aims to extract general social features, that fully
preserve social structure in hyperbolic space. After that,
the hyperbolic preference learning module further com-
bines the pre-trained social embeddings and heterogeneous
graph structure to learn better user and item representa-
tions for recommendation. Combining implicit social feature
enhancement and explicit heterogeneous graph learning,
HGSR can make full use of social networks to enhance
recommendation performances.

3.2 Hyperbolic Social Pre-training Module
To fully exploit social network with hierarchical properties,
we design a hyperbolic social pre-training module to extract
social embeddings. As illustrated in the upper part of Fig. 3,
there are three components of hyperbolic social pre-training
module: social embedding initialization, hyperbolic social
encoder, and social link optimization.

3.2.1 Social Embedding Initialization
We first initialize user embeddings in hyperbolic space with
a hyperbolic Gaussian sampling method [37], [51]. Let PE ∈
RM×d denote user embeddings in Euclidean space. Given
the pre-defined original point o = [−1, 0, 0, ..., 0], we have

the corresponding user embeddings Z0 = [0,PE ] in tangent
space. Then, the initialized hyperbolic social embeddings P0

are defined as follows:

P0 = expo(Z
0). (7)

3.2.2 Hyperbolic Social Graph Encoder
After initializing user embeddings in social networks, the
hyperbolic social encoder is designed to model the high-
order social influence diffusion process for user embedding
learning. There are two steps in this encoder: social diffu-
sion and embedding readout, we first introduce the social
diffusion process. As the mean aggregation does not have
closed form solution in hyperbolic space [8], [5], we need
firstly map hyperbolic embeddings into tangent space, then
perform social propagation on tangent space. Specifically,
for user a, given her embeddings zla in lth convolution layer,
the corresponding embeddings zl+1

a in (l + 1)
th convolution

layer is updated by:

zl+1
a = zla +

∑
b∈Sa

1

|Sa|
zlb, (8)

where Sa denotes social neighbors who a follows, and
|Sa| denotes the number of social neighbors. After L social
graph convolution layers, we obtain L+ 1 user embedding
matrices [Z0,Z1, ...,ZL], then use sum-pooling strategy to
fuse the high-order social information:

Z =

L∑
l=1

Zl. (9)

Following the existing hyperbolic graph recommendation
works [37], [51], we discard 0th user embeddings, which
means that user representations only rely on the correspond-
ing one-skip neighbors and high-order neighbors. Then, we
project the learned user embeddings from tangent space
back to hyperbolic space:

P = expo(Z), (10)

where P denotes the final hyperbolic social embeddings,
which will be used for social link prediction.
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3.2.3 Social Link Prediction
After obtaining hyperbolic social embeddings P, as shown
the upper part in Fig. 3, we apply hyperbolic distance
function dL to infer the propensity score ŝab that user a
links with user b:

ŝab =
1

d2L(pa,pb)
. (11)

We employ the adaptive margin loss function for optimiza-
tion [51], which is described as follows:

Ls =

M−1∑
u=0

∑
(a,b)∈Ds

u

max(d2L(pu,pa)− d2L(pu,pb) +mua, 0),

(12)

where DS
u = {(a, b)|a ∈ Su∧b ̸∈ Su} denotes the pair-wise

training data, and mua is an adaptive margin depending on
positive sample (u, a):

mua = δ(d2L(pu,o) + d2L(pa,o)− d2L(pu,pa)), (13)

where δ(·) is the sigmoid function. We use Riemannian
SGD [3] to optimize the above social reconstruction loss and
obtain the optimal social embeddings. Next, the pre-trained
social embeddings as additional features, are fed into the
hyperbolic preference learning module in an implicit feature
enhancement manner.

3.3 Hyperbolic Preference Learning Module

With tacking the semantic gap existing between social net-
works and user-item interaction graph, we propose the
hyperbolic preference learning module based on hetero-
geneous graph learning. As illustrated in the bottom part
of Fig. 3, we formulate user-item interactions and social
network as a heterogeneous graph, and treat the pre-trained
social embeddings as feature input to enhance recommen-
dation performances. As such, we combine implicit feature
enhancement and explicit graph modeling for preference
learning, which can better tackle heterogeneity and diffu-
sion noise in social recommendation. Following, we intro-
duce three components of this module: hyperbolic embed-
ding fusion, hyperbolic heterogeneous graph learning, and
preference prediction.

3.3.1 Hyperbolic Embedding Fusion
Same to the hyperbolic social pre-training module, we
firstly initialize user and item preference embeddings UE ∈
RM×d,VE ∈ RN×d in Euclidean space. Then, we project
the pre-trained hyperbolic social embeddings into tangent
space: Z = logo(P). The embedding fusion process is
performed on tangent space:

H0 = g(Z, [0,UE ]), (14)

where H0 denotes the fused user embeddings in tangent
space, and g(·) denotes fusion function. We try several
fusion strategies such as MLP, concatenation, pooling, and
find sum-pooling is the most effective. For items, we have
their tangent embeddings Q0 = [0,VE ]. Based on the fused
user embeddings and item embeddings in tangent space, we
have the initialized hyperbolic user and item embeddings
U0 = expo(H

0), V0 = expo(Q
0).

3.3.2 Hyperbolic Heterogeneous Graph Encoder
Considering that user preferences are influenced by
both social neighbors and interacted items, we refer to
DiffNet++ [46] and encode the high-order social influence
diffusion and user-item propagation to preference learning.
We first project the initialized hyperbolic user and item
embeddings into tangent space H0 and Q0, then perform
neighbor propagation on the heterogeneous graph. Specif-
ically, for user a and item i, we update their embeddings
hl+1
a ,ql+1

i on (l + 1)
th convolution layer as follows:

hl+1
a = hl

a + α
∑
b∈Sa

1

|Sa|
hl
b + (1− α)

∑
j∈Ra

1

|Ra|
ql
j ,

ql+1
i = hl

i +
∑

c∈RT
i

1

|RT
i |

hl
c,

(15)

where hl
a and ql

i mean user a and item i embeddings on lth

convolution layer, respectively. Sa and Ra denote user a’s
linked social neighbors and interacted items. RT

i denotes
the sub userset that interact with item i. Besides, we set a
hyper-parameter α to balance social and interest weights
when performing neighbor aggregation for user embed-
ding learning, the parameter sensitivity was also conducted
on experimental parts. In practice, we find that a simple
weighted sum strategy has a better performance compared
with the attention mechanism. After L convolution layers,
we obtain L + 1 user embedding matrices [H0,H1, ...,HL]
and L+1 item embedding matrices [Q0,Q1, ...,QL], we use
sum-pooling to combine these embeddings:

H =

L∑
l=1

Hl,Q =

L∑
l=1

Ql. (16)

Then, we project the fused tangent embeddings back to
hyperbolic space to generate the final hyperbolic preference
embeddings:

U = expo(H),V = expo(Q). (17)

3.3.3 Preference Prediction
After obtaining the learned hyperbolic user and item prefer-
ence embeddings, we predict the preference score between
user a and item i based on their distance in hyperbolic
space:

r̂ai =
1

d2L(ua,vi)
. (18)

We use adaptive margin loss for model optimization, which
is proposed in HICF [51]. The margin loss function pulls
the positive samples and pushes the negative samples to
the margin, and the adaptive margin strategy assigns a
higher margin to nodes which close to the root point in
hyperbolic space [35]. Specifically, the adaptive margin loss
is computed as follows:

Lr =

M−1∑
a=0

∑
(i,j)∈Dr

a

max(d2L(ua,vi)− d2L(ua,vj) +mai, 0),

(19)

where Dr
a = {(i, j)|i ∈ Ra ∧ j ̸∈ Ra} denotes the pair-

wise training data for user a, and mai denotes the adaptive
margin which is learned by the positive pair (a, i):

mai = δ(d2L(ua,o) + d2L(vi,o)− d2L(ua,vi)). (20)

We employ Riemannian SGD to optimize the loss func-
tion [3], [37]. For model training, we try two popular
sampling strategies, random sampling [34] and popularity-
based sampling [51]. The overall model implementation is
illustrated in Algorithm 1.
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Algorithm 1 The Algorithm of HGSR
Input: User-user social network S, user-item interaction

matrix R;
Output: Parameter Θs = PE in hyperbolic social pre-

training module, Θp = {UE ,VE} in hyperbolic pref-
erence learning module;

1: Random initialize parameter Θs;
2: Hyperbolic social embedding initialization (Eq.(7));
3: while not converged do
4: Sample a batch of training data for social pre-training;
5: Compute hyperbolic social embeddings with graph

convolutions (Eq.(8)-Eq.(10));
6: Predict social links with (Eq.(11));
7: Update parameter Θs with (Eq.(12));
8: end while
9: Random initialize parameter Θp;

10: Hyperbolic embedding fusion with pre-trained social
embeddings (Eq.(14));

11: while not converged do
12: Sample a batch training data for preference learning;
13: Compute hyperbolic user and item embeddings with

graph convolutions (Eq.(15)-Eq.(17));
14: Predict rating preference with (Eq.(18));
15: Update parameters Θp with (Eq.(19));
16: end while
17: Return Θs, Θp.

TABLE 2
Running time per epoch of different models.

Dataset Flickr Ciao Epinions Dianping
LightGCN 2.676(s) 2.620(s) 2.692(s) 6.535(s)
DiffNet++ 2.902(s) 2.941(s) 2.782(s) 7.857(s)

HICF 2.028(s) 1.988(s) 1.963(s) 10.012(s)
HGSR 3.486(s) 2.341(s) 3.439(s) 16.781(s)

3.4 Discussion

3.4.1 Space Complexity
As illustrated in Algorithm 1, the parameters of HGSR are
composed of two parts: hyperbolic social pre-training pa-
rameters Θs = PE and hyperbolic preference learning pa-
rameters Θp = {UE ,VE}. Specifically, our model needs to
learn embeddings of (2M +N)d size, while traditional col-
laborative filtering methods (e.g., BPR [34], LightGCN [12])
need (M + N)d size, the additional part is the pre-trained
user social embeddings Md. In general, the user’s social net-
work is stable and only needs to be pre-trained once, which
is convenient and affordable for recommender systems.

3.4.2 Time Complexity
Compared to graph-based social recommendation models in
Euclidean space [12], [46], our model only spends additional
time on space transformation as shown in Eq. (5) and Eq. (6).
The overall time cost mainly lies in layer-wise propagation.
For the social pre-training module, the layer propagation
consumptions are O(|S+|Lsd), where |S+| and Ls denote
the number of non-zero elements in S and the number
of average social neighbors, respectively. For preference
learning module, the layer propagation consumptions are
O(|S+|Lsd) + O(|R+|(Lu + Li)d), where |R|+ denotes the
number of non-zero elements in interaction matrix R, Lu

TABLE 3
The statistics of four datasets.

Dataset Flickr Ciao Epinions Dianping
Users 8,358 7,375 18,202 59,426
Items 82,120 91091 47,449 10,224

Ratings 327,815 226307 298,173 934,334
Links 187,273 111,781 381,559 813,331

Rating Density 0.048% 0.034% 0.035% 0.154%
Link Density 0.268% 0.206% 0.115% 0.023%

and Li are the number of average interacted users and
average interacted items. Considering the sparse feedback
and social connections, {Ls, Lu, Li} ≪ min{M,N}, so the
total time complexity is acceptable in practice. For clarity
representing the time complexity of the proposed model, we
report the running time per epoch of several representative
methods. We can find that social recommendation meth-
ods (DiffNet++, HGSR) spend more time than collaborative
filterings (LightGCN, HICF). Intuitively, social recommen-
dation has an additional social diffusion process, but the
time cost is affordable overall.

4 EXPERIMENTS

In this part, we conduct extensive experiments on four
public datasets to demonstrate the effectiveness of our pro-
posed HGSR . We first introduce the experimental settings,
and then report the overall performance compared to state-
of-the-art baselines. Finally, we investigate each component
and give a detailed analysis of HGSR .

4.1 Experimental Settings

4.1.1 Datasets
We select four widely used social recommendation datasets:
Flickr, Ciao, Epinions, and Dianping. Among them, Flickr1

is an online image-sharing social platform, and Dianping2

is a large Chinese location-based social platform. Ciao3

and Epinions4 are two popular product review-based social
platforms. For all datasets, we transfer the original ratings
into binary values. We employ a rating filtering strategy
that filters original rating values less than 3 and keeps
the remaining ratings as positive feedback. After that, we
randomly sample 80% interactions as training data, and the
remaining 20% data as test data. The detailed statistics of all
datasets are summarized in Table 4.

4.1.2 Baselines and Evaluation Metrics
We select several competing methods for comparisons with
our proposed HGSR model, including Euclidean and hyper-
bolic methods. Detailed descriptions are listed as follows:

• BPR [34]: BPR is a classic collaborative filtering
method. It designs the pairwise ranking loss function
which is widely used in implicit feedback based
recommendations.

• GraphRec [7]: GraphRec incorporates graph neural
networks and social recommendation. It captures

1. http://flickr.com/
2. https://lihui.info/data/
3. https://www.ciao.co.uk/
4. http://www.trustlet.org/downloaded epinions.html
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TABLE 4
Comparisons of all methods, with “R” representing interaction matrix
input and“S” representing social network input. For user preference

learning, we use “G” to denote graph formulation, “E” to denote
Euclidean modeling, and “H” to denote hyperbolic modeling. Besides,

we use “P” to denote social embeddings pre-training.

Model Input User Preference LearningModels R S G E H P
BPR ✓ ✕ ✕ ✓ ✕ ✕

SocialRec ✓ ✕ ✓ ✕ ✕ ✕
LightGCN ✓ ✕ ✓ ✕ ✕ ✕
DiffNet++ ✓ ✓ ✓ ✕ ✕ ✕

HGCF ✓ ✕ ✓ ✕ ✓ ✕
HRCF ✓ ✕ ✓ ✕ ✓ ✕
HICF ✓ ✕ ✓ ✕ ✓ ✕
HSR ✓ ✓ ✓ ✕ ✓ ✕

HyperSoRec ✓ ✓ ✓ ✕ ✓ ✕
HGSR ✓ ✓ ✓ ✕ ✓ ✓

both interactions and opinions in the user-item graph
and joint social connections for recommendation.

• LightGCN [12]: LightGCN simplifies GCNs by re-
moving feature transformation and non-linear ac-
tivation, and achieves competitive performance for
collaborative filtering.

• DiffNet++ [46]: DiffNet++ is a SOTA graph-based
social recommendation model in Euclidean space.
It models the recursive social diffusion and interest
diffusion process for embedding learning.

• HGCF [37]: HGCF is the first attempt to combine
GCN and hyperbolic embedding learning for collab-
orative filtering. It models embeddings in hyperbolic
space and designs a skip-connected graph encoder
for information propagation.

• HRCF [52]: HRCF designs a geometric-aware hyper-
bolic regularize, which can tackle the over-smoothing
issue and make better discrimination.

• HICF [51]: HICF investigates the recommendation
performances of head/tail item groups on both Eu-
clidean and hyperbolic models, and proposes an
adaptive margin loss function with popularity-based
sampling strategy to improve recommendation per-
formances in hyperbolic space further.

• HSR [21]: HSR designs a hyperbolic aggregator on
the user’s social neighbors, and introduces an accel-
eration strategy and attention mechanism for social
recommendation.

• HyperSoRec [41]: HyperSoRec proposes a hyper-
bolic social graph encoder with multi-aspect message
modeling. It also designs an adaptive metric learning
function to capture user influence and item interac-
tions.

As we focus on the item ranking task, we employ two
widely used metrics: Recall@N and NDCG@N to evalu-
ate the recommendation performances of various methods.
Specifically, for a Top-N ranking list, Recall@N measures the
percentage of hit items in the ground truth, and NDCG@N
further assigns a higher score to the top-ranked items. All
evaluation metrics are computed by an all-ranking proto-
col that selects all non-interacted items as candidates. All
metrics are reported with average values with 10 times of
repeated experiments.

4.1.3 Parameter Settings
We initialize all model embeddings with a Gaussian dis-
tribution with a mean value of 0 and a standard variance
of 0.01, and the embedding dimension is fixed to 64. For
Euclidean models, we use Adam with a learning rate of
0.001 and batch size of 1024 to optimize all models. For
hyperbolic models, we use the Riemannian SGD [3], [59]
with weight decay 1e−5 learning rate 0.001 and batch size
10000 to optimize all models. For fair comparisons, we refer
to the parameters reported by original papers and fine-turn
them with gird-search. For our proposed HGSR model, we
set curvature c=-1 and search GCN layers in the range of
{1, 2, 3, 4}. We implement our model with PyTorch5 based
on TITAN RTX.

4.2 Overall Comparisons
We report the overall recommendation performances of all
methods under different Top-N settings from Table 5 to
Table 8, and have the following observations:

• Firstly, graph-based recommendation mod-
els (GraphRec, LightGCN, DiffNet++) significantly
outperform BPR, which demonstrates the superiority
of learning preference by high-order graph
formulation. Compared with LightGCN, DiffNet++
achieves better performance in most situations,
it shows that leveraging social networks can
alleviate data sparsity issues in CF and improve
recommendation performances.

• Secondly, almost all hyperbolic recommendation
models show better performance than Euclidean
models. This phenomenon verifies the effectiveness
of modeling graph embeddings in hyperbolic space
due to its exponential growth capacity and structure
preservation ability. When comparing hyperbolic rec-
ommendation models, HICF achieves the best per-
formance by benefiting from adaptive margin learn-
ing and a negative sampling strategy. Besides, HSR
and HyperSoRec only model the social diffusion
process in hyperbolic space without graph convolu-
tions on user-item graph, and lead to performance
decrease compared to HICF.

• Our proposed HGSR model consistently outper-
forms all methods on all datasets, indicating the
effectiveness of hyperbolic social pre-training and
heterogeneous preference learning for social recom-
mendation tasks. Compared to DiffNet++ (strongest
baseline in Euclidean space), HGSR achieves signifi-
cant improvement on all datasets (e.g., for NDCG@20
metric, about 97% improvement on Flickr, 18% on
Ciao, 13% on Epinions and 11% on Dianping). Be-
sides, compared with the best hyperbolic social rec-
ommendation model HyperSoRec, our model also
achieves impressive improvements, e.g., 48.07% im-
provement of NDCG@20 on the Flickr dataset and
10.62% improvement on the Ciao dataset. Compared
with the strongest hyperbolic CF baseline HICF, our
model improves NDCG@20 by about 30.51% and
10.05% on Flickr and Ciao datasets.

5. https://pytorch.org/
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TABLE 5
Performance comparisons with different Top-N values on Flickr dataset.

N=10 N=20 N=30 N=40 N=50Models Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR 0.0047 0.0044 0.0074 0.0050 0.0095 0.0056 0.0115 0.0061 0.0133 0.0066
GraphRec 0.0041 0.0041 0.0071 0.0048 0.0089 0.0053 0.0111 0.0059 0.0133 0.0065
LightGCN 0.0070 0.0064 0.0113 0.0074 0.0142 0.0082 0.0170 0.0091 0.0196 0.0098
DiffNet++ 0.0078 0.0070 0.0117 0.0078 0.0154 0.0088 0.0183 0.0097 0.0202 0.0103
HGCF 0.0226 0.0102 0.0283 0.0107 0.0317 0.0112 0.0349 0.0118 0.0380 0.0124
HRCF 0.0241 0.0106 0.0290 0.0106 0.0329 0.0112 0.0364 0.0117 0.0395 0.0124
HICF 0.0269 0.0116 0.0335 0.0118 0.0377 0.0123 0.0408 0.0128 0.0438 0.0134
HSR 0.0215 0.0100 0.0271 0.0105 0.0305 0.0109 0.0343 0.0117 0.0377 0.0125
HyperSoRec 0.0170 0.0095 0.0226 0.0104 0.0278 0.0115 0.0319 0.0123 0.0346 0.0130
HGSR 0.0385 0.0156 0.0452 0.0154 0.0495 0.0158 0.0527 0.0161 0.0559 0.0167
Improvement 43.12% 34.48% 34.93% 30.51% 31.30% 28.46% 29.17% 25.78% 27.63% 24.63%

TABLE 6
Performance comparisons with different Top-N values on Ciao dataset.

N=10 N=20 N=30 N=40 N=50Models Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR 0.0320 0.0276 0.0478 0.0319 0.0582 0.0348 0.0676 0.0374 0.0760 0.0395
GraphRec 0.0342 0.0297 0.0527 0.0348 0.0653 0.0384 0.0757 0.0412 0.0845 0.0434
LightGCN 0.0356 0.0312 0.0560 0.0367 0.0708 0.0408 0.0805 0.0434 0.0890 0.0456
DiffNet++ 0.0355 0.0304 0.0563 0.0363 0.0704 0.0404 0.0821 0.0436 0.0921 0.0462
HGCF 0.0336 0.0294 0.0540 0.0352 0.0692 0.0397 0.0815 0.0430 0.0912 0.0456
HRCF 0.0350 0.0298 0.0539 0.0354 0.0694 0.0400 0.0821 0.0433 0.0919 0.0460
HICF 0.0378 0.0323 0.0600 0.0388 0.0768 0.0437 0.0896 0.0471 0.0989 0.0496
HSR 0.0340 0.0282 0.0560 0.0346 0.0709 0.0389 0.0844 0.0426 0.0953 0.0453
HyperSoRec 0.0364 0.0318 0.0600 0.0386 0.0772 0.0434 0.0910 0.0470 0.1018 0.0497
HGSR 0.0422 0.0357 0.0674 0.0427 0.0843 0.0475 0.0964 0.0508 0.1068 0.0535
Improvement 11.64% 10.53% 12.33% 10.05% 9.20% 8.70% 5.93% 7.86% 4.91% 7.65%

TABLE 7
Performance comparisons with different Top-N values on Epinions dataset.

N=10 N=20 N=30 N=40 N=50Models Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR 0.0335 0.0235 0.0540 0.0297 0.0688 0.0338 0.0816 0.0371 0.0921 0.0397
GraphRec 0.0436 0.0315 0.0681 0.0387 0.0867 0.0437 0.1019 0.0476 0.1170 0.0512
LightGCN 0.0432 0.0314 0.0675 0.0385 0.0850 0.0434 0.1003 0.0473 0.1126 0.0503
DiffNet++ 0.0468 0.0329 0.0727 0.0406 0.0901 0.0454 0.1052 0.0492 0.1192 0.0527
HGCF 0.0435 0.0318 0.0678 0.0389 0.0867 0.0442 0.1025 0.0483 0.1160 0.0516
HRCF 0.0449 0.0325 0.0695 0.0397 0.0882 0.0449 0.1046 0.0491 0.1186 0.0526
HICF 0.0502 0.0359 0.0779 0.0440 0.0978 0.0494 0.1155 0.0540 0.1308 0.0577
HSR 0.0418 0.0296 0.0678 0.0373 0.0877 0.0427 0.1036 0.0468 0.1180 0.0503
HyperSoRec 0.0474 0.0337 0.0757 0.0420 0.0956 0.0474 0.1130 0.0518 0.1288 0.0556
HGSR 0.0519 0.0372 0.0822 0.0460 0.1019 0.0515 0.1202 0.0561 0.1351 0.0597
Improvement 3.39% 3.62% 5.52% 4.55% 4.19% 4.25% 4.07% 3.89% 3.29% 3.47%

The above observations strongly demonstrate our proposed
HGSR model can effectively exploit social networks and
user-item interactions in hyperbolic space. Combining ex-
plicit heterogeneous graph learning and implicit social fea-
ture enhancement, HGSR significantly improves social rec-
ommendation performances.

4.3 Investigation of the proposed HGSR
Ablation Study. To exploit the effectiveness of each compo-
nent of our proposed HGSR model, we conduct ablation
studies on all datasets. As shown in Table 9, we com-
pare Top-20 recommendation performances of HGSR and
its variants. Among them, HGSR-w/o P denotes HGSR

without hyperbolic social pre-training module, HGSR-w/o
S denotes HGSR without social diffusion on preference
learning module (only user-item graph propagation), and
HGSR-w/o P+S denotes HGSR without pre-training and
social diffusion modeling, our method degenerates to HICF.
From Table 9, we observe that each variant of HGSR shows
worse performance than HGSR, which demonstrates the
effectiveness of each proposed component. Both implicit
and explicit social modeling significantly improve recom-
mendation performances.

Data sparsity Analysis. Here we conduct data sparsity
analysis to validate the contribution of the proposed hy-
perbolic social pre-training module. Specifically, we split
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TABLE 8
Performance comparisons with different Top-N values on Dianping dataset.

N=10 N=20 N=30 N=40 N=50Models Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR 0.0428 0.0317 0.0716 0.0410 0.0947 0.0478 0.1147 0.0533 0.1328 0.0580
GraphRec 0.0482 0.0361 0.0799 0.0463 0.1050 0.0537 0.1263 0.0596 0.1451 0.0645
LightGCN 0.0470 0.0351 0.0804 0.0458 0.1064 0.0536 0.1283 0.0597 0.1467 0.0646
DiffNet++ 0.0508 0.0380 0.0832 0.0484 0.1094 0.0561 0.1323 0.0624 0.1524 0.0676
HGCF 0.0497 0.0386 0.0829 0.0494 0.1088 0.0572 0.1301 0.0632 0.1486 0.0682
HRCF 0.0506 0.0394 0.0837 0.0501 0.1100 0.0580 0.1323 0.0643 0.1512 0.0694
HICF 0.0519 0.0402 0.0853 0.0509 0.1120 0.0589 0.1347 0.0653 0.1540 0.0705
HSR 0.0474 0.0352 0.0796 0.0457 0.1062 0.0536 0.1287 0.0597 0.1483 0.0649
HyperSoRec 0.0528 0.0397 0.0874 0.0508 0.1141 0.0587 0.1373 0.0652 0.1568 0.0704
HGSR 0.0556 0.0422 0.0909 0.0536 0.1185 0.0619 0.1411 0.0682 0.1621 0.0737
Improvement 5.30% 4.98% 4.00% 5.30% 3.86% 5.09% 2.77% 4.44% 3.38% 4.54%

TABLE 9
Ablation study of HGSR.

Models Flickr Ciao Epinions Dianping
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

HGSR-w/o P+S 0.0335 0.0118 0.0600 0.0388 0.0779 0.0440 0.0853 0.0509
HGSR-w/o P 0.0310 0.0111 0.0644 0.0409 0.0792 0.0443 0.0903 0.0532
HGSR-w/o S 0.0337 0.0116 0.0659 0.0417 0.0755 0.0427 0.0836 0.0460

HGSR 0.0452 0.0154 0.0674 0.0425 0.0822 0.0460 0.0909 0.0536

all users into different groups according to their train-
ing records, and compare their performances of differ-
ent recommendation models. As shown in Fig. 4, we
present comparisons on four sparsity user groups. Among,
HGSR-w/o P denotes that HGSR without social pre-
training module. Compared with the corresponding CF
backbone (HICF), HGSR-w/o P achieves improvements in
most sparse groups, while showing a little decrease in the
densest group. It indicates that explicit graph learning alle-
viates the data sparsity issue, while also introducing noise
for those active users, these experimental phenomenons are
also revealed in DiffNet [47]. Luckily, we find that our
proposed HGSR consistently outperforms HICF in each
user group. This verifies the effectiveness of tackling the
social diffusion noise issue by implicit feature enhancement
with hyperbolic pre-trained social embeddings.

[0,16) [16,32) [32,64) [64,)0.02

0.04

0.06

0.08

0.10

ND
CG

@
20

HICF
HGSR-w/o P
HGSR

(a) Ciao Dataset

[0,32) [32,64) [64,128) [128,)0.02

0.04

0.06

0.08

ND
CG

@
20

HICF
HGSR-w/o P
HGSR

(b) Epinions Dataset

Fig. 4. Performance comparisons under different sparsity user
groups.

Generalization Analysis We conduct experiments to
investigate the generalization of the pre-trained hyperbolic
social embeddings. Specifically, we combine the pre-trained
hyperbolic social embeddings with SOTA Euclidean and
Hyperbolic recommendation models. As shown in Fig. 5,
we select LightGCN, DiffNet++, and HGSR-w/o P as back-

bones, and compare their performances and corresponding
variants (combined with the pre-trained hyperbolic social
embeddings). We find that the pre-trained hyperbolic social
embeddings can significantly improve each embedding-
based recommendation method, either Euclidean mod-
els (i.e., LightGCN, DiffNet++) or Hyperbolic model (i.e.,
HGSR-w/o P). It demonstrates that our proposed hyper-
bolic pre-training module presents a good generalization
ability, which can easily couple with other embedding-based
recommendation methods and enhance their performances.
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Fig. 5. Generalization of the pre-trained hyperbolic social feature.

4.4 Comparisons with Different Pre-training Methods

In this part, we compare the proposed hyperbolic social pre-
training method with its counterpart in Euclidean space,
we keep all model structures the same and only compare
different spaces. As shown in Table 10, we present the
experimental results of different social pre-training meth-
ods for recommendation. Among them, HGSR-w/o P is
the backbone model without any pre-training process, So-
cialPre(E) denotes social pre-training in Euclidean space,
and SocialPre(H) denotes social pre-training in Hyperbolic
space. We can find that our proposed hyperbolic social pre-
training method achieves better performances in all settings,
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TABLE 10
Comparisons of social pre-training methods in different spaces.

Models Flickr Epinions
Recall@20 NDCG@20 Recall@20 NDCG@20

HGSR-w/o P 0.0310 0.0111 0.0792 0.0443
+SocialPre(E) 0.0381 0.0139 0.0805 0.0448
+SocialPre(H) 0.0452 0.0154 0.0822 0.0460

(a) Hyperbolic pre-training (b) Euclidean pre-training

Fig. 6. Visualization of the pre-trained social embeddings on the
Epinions dataset, where red nodes are head users and blue
nodes are tail users.

verifying the superiority of improving recommendation
with hyperbolic pre-training. Besides, we visualize the pre-
trained social embeddings under hyperbolic learning and
Euclidean learning. As we have no available labels to dis-
tinguish nodes in the social networks, we split users into
head users and tail users according to their social neighbors.
Then, we randomly sample 500 users from head and tail
users, respectively, and illustrate their embedding distribu-
tions. As illustrated in Fig. 6, we observe that hyperbolic
pre-training presents better discrimination than Euclidean
pre-training, which can reflect the head/tail structure of the
graph.

4.5 Detailed Model Analysis

Embedding Size. We compare our proposed HGSR model
and DiffNet++ performances under different embedding
sizes. As shown in Fig. 7, we report NDCG@20 of both
models on the Flickr and Epinions datasets, where em-
bedding sizes are selected from {32, 64, 128}. We observe
that HGSR consistently outperforms DiffNet++, which ver-
ifies the effectiveness of promoting recommendation per-
formances under different embedding sizes. Besides, we
find that the performance of HGSR quickly increases
when embedding size increases, while DiffNet++ is more
slight, verifying the capacity of HGSR increases more than
DiffNet++ with a larger embedding size.

Parameter Sensitivity. To investigate the influence of
the social propagation part on heterogeneous graph learn-
ing, we conduct experiments under different social balance
weights. As illustrated in Fig. 8, we represent Recall@20
and NDCG@20 of various weights α on all datasets. Please
note that α = 0 means the social diffusion part disappears,
we also remove the social pre-training module, and then
HGSR degenerates to HICF. From the experimental results,
we can find that HGSR achieves the best performance with
different α for different datasets. Specifically, HGSR obtains
the best performance with α = 0.1 on Flickr, α = 0.2 on
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Fig. 7. Performance comparisons under different embedding
sizes.

Ciao and Epinions, and α = 0.3 on the Dianping dataset.
Different dataset properties have different social influences
on user interaction behavior. Besides, HGSR doesn’t show
better performance when α increases, which means that a
suitable social weight setting is important to exactly model
user preferences.

Propagation Layers. We empirically study the effects of
different propagation layers of Graph encoder for preference
learning. As shown in Table 11, we compare HGSR per-
formances under different graph propagation layers. We
can find that the recommendation performances increase
quickly and then drop when the propagation layers keep
deeper. This indicates that over-smoothing issues also limit
the performances of hyperbolic graph learning for social
recommendation. When propagation layer L = 3, our
HGSR reaches the best performance on Flickr, Epinions,
and Dianping Datasets, while L = 4 on Ciao datasets. The
reason is that the Ciao dataset has the sparsest interactions
on all datasets. Therefore, a proper propagation layer is
important to balance the high-order message passing and
over-smoothing issues simultaneously.

5 RELATED WORK

5.1 Social Recommendation

Recommender systems provide personalized suggestions
for each user by modeling users’ preferences. Classical
collaborative filtering methods [28], [34], [33] project both
users and items into a low dimensional latent space, then
recommend item lists based on inner product scores. With
the development of deep learning, neural network based
methods have been proposed to tackle collaborative fil-
tering through modeling the non-linear interactions [13].
Although widely applied, CF methods are usually far from
satisfactory due to users’ sparse interactions. Following
the social influence and social homogeneity theory [18],
[20], [24], the social recommendation has emerged as a
popular research direction, which utilizes the additional
social network to alleviate data sparsity issue and improve
recommendation performances. Early studies leverage so-
cial networks in shallow form, which can be divided into
two classes: social regularization-based models [27], [15],
[16] and user behavior enhancement-based models [10],
[11]. Social regularization-based models assume that two
connected users share a similar preference, and then an
additional regularization term is added to the ranking op-
timization objective [27]. Instead of adding regularization,
TrustSVD regards each social neighbor’s interacted items as
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Fig. 8. Performance comparisons under different values of parameter α.

TABLE 11
Recommendation performances with different propagation layers L.

Models Flickr Ciao Epinions Dianping
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

L=1 0.0256 0.0103 0.0606 0.0371 0.0727 0.0402 0.0850 0.0496
L=2 0.0303 0.0124 0.0654 0.0408 0.0804 0.0451 0.0864 0.0504
L=3 0.0452 0.0154 0.0673 0.0425 0.0822 0.0460 0.0909 0.0536
L=4 0.0323 0.0126 0.0674 0.0427 0.0808 0.0455 0.0824 0.0486

the auxiliary feedback to predict the user’s unknown pref-
erence [10]. Besides, CNSR proposes to leverage the global
social network structure to learn user preference based on
social embedding learning [48]. These social recommenda-
tion models achieved better recommendation performances
than CF models. However, they focus on the first-order
social structure and fail to fully exploit the global social
network in the modeling process.

5.2 Neural Graph based Recommendation
Recently, GCNs have received success for graph learning
based tasks [17], [39]. Researchers have adopted the key
ideas of graph convolutions for graph-based recommenda-
tions, which have shown state-of-the-art performance [56],
[12], [49], [54]. Different from traditional CF approaches
that learn user and item embeddings with matrix factor-
ization [28], [34], neural graph based CF methods for-
mulate user-item interactions as a bipartite graph. Then,
these neural graph models learn user and item embeddings
by exploiting the high-order collaborative signal through
multiple graph convolutions. LightGCN is a representative
work in neural graph based CF models, the basic paradigm
is that discard the additional feature transformation and
non-linear activation in GCNs and only perform neighbors
aggregation for embedding learning [12].

Some researchers also propose graph-based social rec-
ommendation models to extend neural graph CF models,
which joint model user-user social influence diffusion and
user-item interest propagation [7], [47], [46], [57], [26]. For
example, GraphRec formulates interactions and opinions
in a user-item bipartite graph, then joint user-user social
graph for embedding learning [7]. DiffNet considers high-
order social influence diffusion and models social influence
diffusion from user-user social network for user represen-
tation learning. DiffNet++ extends DiffNet by combining
social influence diffusion from user-user social network
and interest propagation processes from user-item behavior
with attention mechanism [46]. Besides, RecoGCN considers
multi-relation social connections and proposes a relation-
aware GCN model to formulate user embeddings [50].

MCNE designs a conditional GNN that aims to learn user
similarity in both user-item interaction graph and user-
user social networks [42]. ESFR proposes adversarial graph
convolutional networks to enhance recommendation perfor-
mances by social graph generation [57].

All these graph based (social) recommendation methods
learn users and item embeddings in Euclidean space, then
formulate the high-order graph structure to enhance recom-
mendation. However, they fail to capture the hierarchical
graph structure and representation distortion will lead to
sub-optimal results. Considering the hierarchical structure
of graphs, in this paper, we formulate the social recom-
mendation task in hyperbolic space and propose the HGSR
model.

5.3 Hyperbolic Learning and Applications in Recom-
mendation

Hyperbolic space is a non-Euclidean space with a negative
curvature, which has shown great potential for represen-
tation learning of tree-like hierarchical data. Poincare ball
and Lorentz formulation are two efficient ways to learn
representations in hyperbolic space [29], [30], [38]. Con-
sidering graph data usually present a hierarchical struc-
ture of power-law distribution, researchers have proposed
a series of works that generalize hyperbolic embedding
learning to graph neural networks [23], [5], [61], [25], such
as HGNN [23], HGCN [5] and HGAT [61]. These works
represent nodes in the hyperbolic space, and perform graph
convolutions by injecting nodes from hyperbolic space to
the (Euclidean) tangent space, which builds a bridge be-
tween GCN and hyperbolic learning. Besides, some works
also learn heterogeneous graph embeddings in hyperbolic
space [45], [43], [43]. Recently, researchers have applied
hyperbolic graph learning to various recommendation tasks,
such as collaborative filtering [37], [52], [51], sequential
recommendation [22], [55]. HGCF proposes a hyperbolic
GCN model for collaborative filtering [37], and HRCF de-
signs an additional hyperbolic geometric regularization to
enhance performance [52]. HICF analyzes recommendation
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performances between head and tail items under Euclidean
modeling and hyperbolic modeling, and then proposes an
adaptive margin learning method with popularity-based
negative sampling [51]. There are also some studies that
leverage hyperbolic learning to enhance social recommen-
dation. HSCML introduces a hyperbolic metric learning
based on social connections [60]. HSR designs a hyperbolic
aggregator to combine social neighbors for representation
learning [21]. HyperSoRec exploits hyperbolic social embed-
dings with multiple aspect learning [41].

These hyperbolic graph-based recommendation models
show superior performances compared with their counter-
parts in Euclidean spaces. However, we argue that current
solutions of hyperbolic social recommendation are still far
from satisfactory. In fact, current hyperbolic graph methods
only model social networks or user-item graph in hyperbolic
space separately [21], [41], [37], [51], lacking efficient fusion
of both kinds of graphs for representation learning. In this
paper, we formulate the user-item graph and social network
as a heterogeneous graph, then learn users’ preferences with
hyperbolic graph learning for the social recommendation.
Compared with current hyperbolic heterogeneous graph
embedding methods that directly use hyperbolic distance
instead of Euclidean distance [45], [43], [43], our proposed
HGSR uses graph neural networks to learn the heteroge-
neous graph in hyperbolic space, which can better preserve
the graph structure.

6 CONCLUSION

In this paper, we propose a novel HGSR model for the
hyperbolic social recommendation. To exploit the hetero-
geneity and the noise issue introduced by social influence
diffusion, we design a social pre-training enhanced hyper-
bolic heterogeneous graph learning method. Specifically, we
first pre-train social networks in hyperbolic space, which
can preserve the hierarchical structure properties. Next, we
feed the pre-trained social embeddings into a hyperbolic
heterogeneous graph for preference learning. Such that,
we combine explicit heterogeneous graph learning implicit
social feature enhancement for hyperbolic social recommen-
dation, which can effectively tackle heterogeneity and noise
issues. Finally, extensive experimental results on four real-
world datasets clearly demonstrate the effectiveness of our
proposed model compared to state-of-the-art baselines, in-
cluding high performance, generalization of the pre-trained
feature, and applicability to various sparsity users. In the
future, we aim to exploit more hyperbolic graph learning
techniques for recommendation, such as more effective
hyperbolic graph pre-training, hyperbolic self-supervised
graph learning, and so on.
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[8] M. Fréchet. Les éléments aléatoires de nature quelconque dans un
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pages 215–310, 1948.

[9] O. Ganea, G. Bécigneul, and T. Hofmann. Hyperbolic neural
networks. In NeurIPS, pages 5350–5360, 2018.

[10] G. Guo, J. Zhang, and N. Yorke-Smith. Trustsvd: Collaborative
filtering with both the explicit and implicit influence of user trust
and of item ratings. In AAAI, pages 123–129, 2015.

[11] G. Guo, J. Zhang, and N. Yorke-Smith. A novel recommendation
model regularized with user trust and item ratings. IEEE TKDE,
28(7):1607–1620, 2016.

[12] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn:
Simplifying and powering graph convolution network for recom-
mendation. In SIGIR, pages 639–648, 2020.

[13] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural
collaborative filtering. In WWW, pages 173–182, 2017.

[14] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In ICDM, pages 263–272, 2008.

[15] M. Jamali and M. Ester. A matrix factorization technique with trust
propagation for recommendation in social networks. In RecSys,
pages 135–142, 2010.

[16] M. Jiang, P. Cui, F. Wang, W. Zhu, and S. Yang. Scalable rec-
ommendation with social contextual information. IEEE TKDE,
26(11):2789–2802, 2014.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with
graph convolutional networks. In ICLR, 2017.

[18] A. D. Kramer, J. E. Guillory, and J. T. Hancock. Experimental
evidence of massive-scale emotional contagion through social net-
works. Proceedings of the National Academy of Sciences, 111(24):8788–
8790, 2014.

[19] M. Law, R. Liao, J. Snell, and R. Zemel. Lorentzian distance
learning for hyperbolic representations. In ICML, pages 3672–3681,
2019.

[20] K. Lewis, M. Gonzalez, and J. Kaufman. Social selection and peer
influence in an online social network. Proceedings of the National
Academy of Sciences, 109(1):68–72, 2012.

[21] A. Li, B. Yang, F. K. Hussain, and H. Huo. Hsr: hyperbolic social
recommender. Inf. Sci., 585:275–288, 2022.

[22] Y. Li, H. Chen, X. Sun, Z. Sun, L. Li, L. Cui, P. S. Yu, and
G. Xu. Hyperbolic hypergraphs for sequential recommendation.
In CIKM, pages 988–997, 2021.

[23] Q. Liu, M. Nickel, and D. Kiela. Hyperbolic graph neural net-
works. In NeurIPS, pages 8228–8239, 2019.

[24] Q. Liu, B. Xiang, E. Chen, H. Xiong, F. Tang, and J. X. Yu. Influence
maximization over large-scale social networks: A bounded linear
approach. In CIKM, pages 171–180, 2014.

[25] X. Liu, Y. Zhu, and X. Wu. Joint user profiling with hierarchical
attention networks. Frontiers of Computer Science, 17(3):173608,
2023.

[26] J. Luo, M. He, W. Pan, and Z. Ming. Bgnn: Behavior-aware graph
neural network for heterogeneous session-based recommendation.
Frontiers of Computer Science, 17(5):175336, 2023.

[27] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender
systems with social regularization. In WSDM, pages 287–296, 2011.

[28] A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factoriza-
tion. In NeurIPS, pages 1257–1264, 2008.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

[29] M. Nickel and D. Kiela. Poincaré embeddings for learning hierar-
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