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ABSTRACT
As a key application of artificial intelligence, recommender sys-
tems are among the most pervasive computer aided systems to help
users find potential items of interests. Recently, researchers paid
considerable attention to fairness issues for artificial intelligence
applications. Most of these approaches assumed independence of
instances, and designed sophisticated models to eliminate the sen-
sitive information to facilitate fairness. However, recommender
systems differ greatly from these approaches as users and items
naturally form a user-item bipartite graph, and are collaboratively
correlated in the graph structure. In this paper, we propose a novel
graph based technique for ensuring fairness of any recommendation
models. Here, the fairness requirements refer to not exposing sen-
sitive feature set in the user modeling process. Specifically, given
the original embeddings from any recommendation models, we
learn a composition of filters that transform each user’s and each
item’s original embeddings into a filtered embedding space based
on the sensitive feature set. For each user, this transformation is
achieved under the adversarial learning of a user-centric graph, in
order to obfuscate each sensitive feature between both the filtered
user embedding and the sub graph structures of this user. Finally,
extensive experimental results clearly show the effectiveness of our
proposed model for fair recommendation. We publish the source
code at https://github.com/newlei/FairGo.
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1 INTRODUCTION
With the information explosion, recommender systems have been
widely deployed in most platforms and have penetrated our daily
life [5, 17, 21, 32, 35]. These systems shape the news we consume,
the movie we watch, the restaurant we choose, the job we seek and
so on. While recommendation systems could better help users to
find potentially interesting items, the recommendation results are
also vulnerable to biases and unfairness. E.g., current recommenda-
tion results are empirically shown to favor a particular demographic
group over others [8, 9]. Career recommendation shows apparent
gender-based discrimination even for equally qualified men and
women [20]. Ad recommendation results display racial biases be-
tween users with similar preferences [27].

As biases in algorithms have been ubiquitous in these human
centric artificial intelligence applications, how to evaluate and im-
prove algorithmic fairness to benefit all users has become a hot re-
search topic [14, 25]. Given a specific sensitive attribute, researchers
have designed metrics for measuring fairness in supervised set-
tings [6, 14]. These metrics encourage the proportion of sensitive
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(a) Data processing step

Model Input Sensitive attribute prediction performance
Gender(AUC) Age(F1) Occupation(F1)

PMF

User embedding 0.6615 0.3821 0.1332
First order 0.6181 0.3569 0.1407
Second order 0.5102 0.3431 0.1405
Third order 0.5004 0.3234 0.1289

GCN

User embedding 0.7041 0.4215 0.1485
First order 0.6804 0.3782 0.1474
Second order 0.5811 0.3509 0.1418
Third order 0.5129 0.3449 0.1296

(b) Attribute prediction performance

Figure 1: Performance of two recommendation models (PMF [24] and GCN [21]) for sensitive attribute prediction on MovieLens
dataset. After learning user and item embeddings, we then extract the ;-th user-centric subgraph embedding of each user. The
learned ;-th order embedding vector is treated as feature input for sensitive attribute prediction. We observe that each ;-th
order user-centric graph representation is helpful for attribute prediction. Details can be found in the experiments.

attribute values in a protected group classi�ed as positive is identi-
cal to that of the unprotected group [7, 14]. Among all debiasing
models, fair representation learning has become very popular and
widely studied due to the simplicity, generality and the advances
of representation learning techniques [2, 3, 7, 33, 37]. These fair
representation learning approaches learn data representations to
maintain the main task while �ltering any sensitive information
hidden in the data representations. The fairness requirements are
achieved by speci�c fairness regularization terms [34, 37, 38], or
relied on adversarial learning techniques [12] that try to match
the conditional distribution of representations given each sensitive
attribute value to be identical [2, 3, 7, 33].

In this paper, we focus on fair representation learning for fair
recommendation, which tries to eliminate sensitive information
in the representation learning [2, 3, 37]. Here, the fairness require-
ments refer to the fact that recommender systems do not expose any
sensitive user attribute, such as gender, occupation. In fact, state-of-
the-art recommender systems rely on learning user and item em-
beddings for recommendation. E.g., the popular latent factor models
learn free user and item embeddings for recommendation [24, 26].
Recently, researchers argued that users and items naturally form a
user-item bipartite graph structure [31, 32], and neural graph based
models learn the user and item embeddings by injecting the graph
structure in user and item embedding process, then receive state-of-
the-art recommendation performance [21, 35]. As learning user and
item representations have become the key building block for mod-
ern recommender systems, we also focus on learning fair user and
item embeddings, such that the fair representation learning could
be integrated into modern recommendation architecture. In other
words, the fair recommendation problem turns to learning fair user
and item representations, such that any sensitive information could
not be exposed from the learned embeddings.

In fact, even the user-item interaction behavior do not explicitly
contain any user sensitive information, directly applying state-of-
the-art user and item representation learning would lead to user
sensitive information leakage, due to the widely supported cor-
relation between user behavior and her attributes in social theo-
ries [18, 30, 31]. E.g., a large scale study shows that users’ private
traits (e.g., gender, political views) are predictable from their like
behaviors from Facebook. Therefore, a naive idea is to borrow the

current fairness-aware supervised machine learning techniques to
ensure fairness on the user embeddings. This solution alleviates
unfairness of user representation learning to some extend. However,
we argue that it is still far from satisfactory due to the uniqueness of
the recommendation problem. Most fairness based machine learn-
ing tasks assume independence of entities, and eliminate unfairness
of each entity independently without modeling the correlations
with other entities. In recommender systems, users and items nat-
urally form a user-item bipartite graph, and are collaboratively
correlated in the systems. In these systems, each user’s embed-
ding is not only related to her own behavior, but also implicitly
correlated with similar users’ behaviors, or the user’s behavior on
similar items. The collaborative correlation between users break the
independence assumption in previous fairness based models, and
is the foundation of collaborative �ltering based recommendation.
As such, even though a user’s sensitive attributes are eliminated
from her embedding, the user-centric structure may expose her
sensitive attribute and lead to unfairness. To validate this assump-
tion, we show an example of how a user’s attribute can be inferred
from the local graph structure of this user with state-of-the-art
embedding models. It can be observed from Figure 1b that the at-
tributes of users are not only exposed through her embedding, but
also through surrounding neighbors’ embeddings. This preliminary
study empirically shows that each user’s sensitive attributes are
also related to the user-centric graph. As users and items form a
graph structure, it is important to learn fair representations for
recommendation from a graph based perspective.

To this end, in this paper, we propose a graph based perspective
for fairness aware representation learning of any recommenda-
tion models. We argue that as the recommendation models are
diversi�ed and complicated in the real production environment,
the proposed model should better be model-agnostic. By de�n-
ing a sensitive feature set, our proposed model takes the user and
item embeddings from any recommendation models as input, and
learns a �lter space such to obfuscate any sensitive information
in the sensitive attribute set, while simultaneously maintains rec-
ommendation accuracy. Speci�cally, we learn a composition of
each sensitive attribute �lter that transforms each user’s and item’s
original embeddings into a �ltered embedding space. As each user
can be represented as an ego-centric graph structure, the �lters

Figure 1: Performance of two recommendation models (PMF [24] and GCN [21]) for sensitive attribute prediction on MovieLens
dataset. After learning user and item embeddings, we then extract the l-th user-centric subgraph embedding of each user. The
learned l-th order embedding vector is treated as feature input for sensitive attribute prediction. We observe that each l-th
order user-centric graph representation is helpful for attribute prediction. Details can be found in the experiments.

attribute values in a protected group classified as positive is identi-
cal to that of the unprotected group [7, 14]. Among all debiasing
models, fair representation learning has become very popular and
widely studied due to the simplicity, generality and the advances
of representation learning techniques [2, 3, 7, 33, 37]. These fair
representation learning approaches learn data representations to
maintain the main task while filtering any sensitive information
hidden in the data representations. The fairness requirements are
achieved by specific fairness regularization terms [34, 37, 38], or
relied on adversarial learning techniques [12] that try to match
the conditional distribution of representations given each sensitive
attribute value to be identical [2, 3, 7, 33].

In this paper, we focus on fair representation learning for fair
recommendation, which tries to eliminate sensitive information
in the representation learning [2, 3, 37]. Here, the fairness require-
ments refer to the fact that recommender systems do not expose any
sensitive user attribute, such as gender, occupation. In fact, state-of-
the-art recommender systems rely on learning user and item em-
beddings for recommendation. E.g., the popular latent factor models
learn free user and item embeddings for recommendation [24, 26].
Recently, researchers argued that users and items naturally form a
user-item bipartite graph structure [31, 32], and neural graph based
models learn the user and item embeddings by injecting the graph
structure in user and item embedding process, then receive state-of-
the-art recommendation performance [21, 35]. As learning user and
item representations have become the key building block for mod-
ern recommender systems, we also focus on learning fair user and
item embeddings, such that the fair representation learning could
be integrated into modern recommendation architecture. In other
words, the fair recommendation problem turns to learning fair user
and item representations, such that any sensitive information could
not be exposed from the learned embeddings.

In fact, even the user-item interaction behavior do not explicitly
contain any user sensitive information, directly applying state-of-
the-art user and item representation learning would lead to user
sensitive information leakage, due to the widely supported cor-
relation between user behavior and her attributes in social theo-
ries [18, 30, 31]. E.g., a large scale study shows that users’ private
traits (e.g., gender, political views) are predictable from their like
behaviors from Facebook. Therefore, a naive idea is to borrow the

current fairness-aware supervised machine learning techniques to
ensure fairness on the user embeddings. This solution alleviates
unfairness of user representation learning to some extend. However,
we argue that it is still far from satisfactory due to the uniqueness of
the recommendation problem. Most fairness based machine learn-
ing tasks assume independence of entities, and eliminate unfairness
of each entity independently without modeling the correlations
with other entities. In recommender systems, users and items nat-
urally form a user-item bipartite graph, and are collaboratively
correlated in the systems. In these systems, each user’s embedding
is not only related to her own behavior, but also implicitly corre-
lated with similar users’ behaviors, or the user’s behavior on similar
items. The collaborative correlation between users break the in-
dependence assumption in previous fairness based models, and is
the foundation of collaborative filtering based recommendation. As
such, even though a user’s sensitive attributes are eliminated from
her embedding, the user-centric structure may expose her sensitive
attribute and lead to unfairness. To validate this assumption, we
show an example of how a user’s attribute can be inferred from the
local graph structure of this user with state-of-the-art embedding
models. It can be observed from Figure 1 that the attributes of users
are not only exposed through her embedding, but also through
surrounding neighbors’ embeddings. This preliminary study empir-
ically shows that each user’s sensitive attributes are also related to
the user-centric graph. As users and items form a graph structure,
it is important to learn fair representations for recommendation
from a graph based perspective.

To this end, in this paper, we propose a graph based perspective
for fairness aware representation learning of any recommenda-
tion models. We argue that as the recommendation models are
diversified and complicated in the real production environment,
the proposed model should better be model-agnostic. By defin-
ing a sensitive feature set, our proposed model takes the user and
item embeddings from any recommendation models as input, and
learns a filter space such to obfuscate any sensitive information
in the sensitive attribute set, while simultaneously maintains rec-
ommendation accuracy. Specifically, we learn a composition of
each sensitive attribute filter that transforms each user’s and item’s
original embeddings into a filtered embedding space. As each user
can be represented as an ego-centric graph structure, the filters
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are learned under a graph based adversarial training process. Each
discriminator tries to predict the corresponding attribute, and the
filters are trained to eliminate any sensitive information that may
be exposed by the user-centric graph structure. Finally, we per-
form extensive experimental results on two real-world datasets
with varying sensitive information. The results clearly show the
effectiveness of our proposed model for fair recommendation.

2 RELATED WORK
Recommendation Algorithms. In a recommender system, there
are two sets of entities: a user set U ( |U | = M ), and an item set
V ( |V |=N ). Users interact with items to form a user-item interaction
matrixR ∈ RM×N . If useru has rated itemv , then ruv is the detailed
rating value, otherwise ruv = 0. Naturally, we could formulate a
user-item bipartite graph as G =< U ∪V ,A >, with A is formulated
based on the rating matrix R as:

A =
[

R 0N×M

0M×N RT

]
. (1)

Learning high quality user and item embeddings has become the
building block for successful recommender systems [21, 24, 28, 32].
Let E ∈ RD×(M+N ) denote the embeddings of users and items learned
by a recommendationEnc :E = Enc(G) = [e1, ..., eu , ..., ev , ...eM+N ].
After that, the predicted preference r̂uv of user u to item v is cal-
culated as the inner product between the corresponding user and
item embeddings as: r̂uv = eTu × ev .

Currently, there are two classes of embedding approaches: the
classical latent factor based models [24, 26] and neural graph based
models [21, 28]. Latent factor models adopt matrix factorization ap-
proaches to learn the free user and item ID embeddings. In contrast,
the neural graph based models iteratively stack multiple graph con-
volution layers for node embedding in this user-item graph. At each
iteration l + 1, each node’s embedding at this layer is a convolution
neighborhood aggregation by neighborhood’s embeddings at layer
l . Empirically, these neural graph based models show better perfor-
mance by injecting the collaborative signal hidden in the graph for
user and item enbeddubg learning [21, 28].

Algorithmic Fairness and Applications. As machine learn-
ing and data mining are widely applied for knowledge discovery
to guide automated decision making, there is much interest in dis-
covering, measuring and ensuring fairness [1, 23, 25]. Among all
fairness metrics, group fairness is widely used to measure how
the underrepresented group is treated in this process [14]. Current
solutions for fairness requirements can be classified into causal
based approaches [16, 19], ranking based models [1], and fair rep-
resentation learning models [3, 7, 23, 37]. In this paper, we focus
on fair representation learning due to its generality and the recent
rapid progress of representation learning techniques. Fair represen-
tation learning models either added fairness-based regularization
terms [34, 37, 38] in the objective function or relied on the adver-
sarial learning models to ensure group fairness [3, 23]. Borrowing
the success of GANs [12], adversarial fair representation models
have a feature learning module and an additional discriminator
to guess the sensitive information. These two parts play a mini-
max game, and adversarial upper bounds on group fairness metrics
can be achieved [23]. Compared to the manually defined fairness

regularization terms, adversarial training for fairness shows the the-
oretical elegance and the learned representations can be transferred
for many downstream tasks. Most of the current fairness represen-
tation learning focused on binary supervised tasks. A recent work
tackled the problem of learning fair representation learning from
graph [3]. This approach advanced previous works with state-of-
the-art graph embedding based representation learning models, and
a composition of discriminators for modeling the correlation of sen-
sitive features [3]. However, the graph structure is only utilized for
accurate node embedding learning, and the fairness is still achieved
by independently filtering out each node’s sensitive information.
E.g., in recommender systems with user-item bipartitie graph, this
model may lead to unfairness as users’ sensitive information is
exposed by the items they like.

Recommendation Fairness. In recommender systems, researchers
observed popularity and demographic disparity of the current
user-centric applications and recommender systems, with differ-
ent demographic groups obtain different utility from the recom-
mender systems [8, 9, 20]. Researchers empirically showed that,
the post-processing technique that improves recommendation di-
versity would amplify user unfairness [22]. Researchers proposed
four new metrics for collaborative filtering based recommendation
with a binary sensitive attribute, in order to measure the discrep-
ancy between the prediction behavior for disadvantages users and
advantaged users. Theses fairness metrics are treated as fairness
regularization terms for group fairness in recommendation [34].
A fairness aware tensor based recommendation is proposed by
isolating sensitive attributes in the latent factor matrix, and the
remaining features are regularized to keep away from sensitive
attributes [38]. Instead of directly debiasing results in the model
learning process, re-ranking models are also applied in search and
recommendation systems, with the well designed fairness metrics
to guide the learning to process to mitigate the disparity [1, 10].
Some studies tried to find the casual effect or design explainable
models for users’ behaviors, in order to ensure fairness grounded on
causal effect or explainable components [16]. We differ from these
recommendation fairness models as we argue that users naturally
form a user-item bipartite graph structure, and users’ sensitive in-
formation can be exposed from her local graph structure. Therefore,
we consider the fairness issue from a graph based perspective.

3 THE PROPOSED FAIRGO MODEL
Most recommender systems are based on embedding based models,
and can be very complex and time-consuming due to the large
volume of users and heterogeneous data [5, 35]. Therefore, the user
and item embedding learning process are performed offline, and
it is nearly impossible to retrain the embedding models from time
to time. We attempt to design a model that takes user and item
embeddings from any recommendation model as input, i.e., E, and
our goal is to achieve a model-agnostic based fair representation
learning in the filtered space. Here, the fairness requirements refer
to a protected or sensitive user attribute set X ∈ RK∗M with K sen-
sitive attributes (e.g., gender and age), which are not encouraged to
help recommendation. In the following, we introduce our proposed
Fair Graph based RecOmmendation (FairGo) model for fairness
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requirements in recommender systems, followed by the theoretical
analysis.

3.1 Overall Architecture
Given the original embedding matrix E and the sensitive attributes
X, FairGo designs a combination ofK sub filters as the filter structure
F to remove information about the user protected attributesX, such
that each node (user node or item node) is filtered from the original
embedding space E to a filtered embedding space as: F = F(G, E, X),
with F = [FU , FV ] ∈ RD×(M+N ) . As there areK sensitive attributes,
the filter network F is composed of K sub filters as: F = [Fk ]Kk=1,
with each sensitive attribute k is associated with a sub filter F k .
Then, each entity (user or item) is filtered and represented in the
filtered embedding space as:

fi =
∑K
k=1 Fk (ei )

K
. (2)

Given the filtered embedding space, the predicted preference
r̂uv of user u to item v is calculated as:

r̂uv = fTu × fv . (3)

With the overall filter network structure to filter original em-
beddings in a filter space, we argue that the fairness-aware recom-
mender systems need to satisfy two goals: representative for users’
personalized preferences while fair for the sensitive attributes. On
one hand, the filtered embeddings should be representative of users’
preferences to facilitate recommendation accuracy. On the other
hand, these filtered embeddings should be fair and do not leak any
information that correlates to each user’s personalized sensitive
information.

In this paper, we adopt adversary training techniques to achieve
fairness. Specifically, given the filtered networks [F k ]Kk=1, there are
K discriminator sub networks. By taking the filtered embedding fu
as input, the k-th sub discriminator attempts to predict the value of
the k-th sensitive attribute. In other words, each sub discriminator
Dk works as a classifier to guess the k-th attribute. The filter net-
work and the discriminator network play the following two-player
minimax game with the following value function V (F ,D):

arg max
F

arg min
D

V (F ,D) = VR − λVG (4)

= E(u,v,r,xu )∼p(E,R,X)[lnqR (r |(fu , fv ) = F (eu , ev ))−

λ lnqD (x |(fu , pu ) = F (eu , ev ))], (5)

where VR is the log likelihood of the rating distribution and VG
is the log likelihood of the predicted attribute distribution. λ is a
balance parameter that balances these two value functions. When
λ equals zero, the fairness requirements disappear.

For the rating distribution, we assume it follows a Gaussian
distribution, with the mean of the Gaussian distribution is the
predicted rating as shown in Eq.(3). Therefore, the value function
of VR is modeled as:

VR = −

M∑
u=1

V∑
v=1

(ruv − r̂uv )2, (6)

where the precision parameter in the Gaussian distribution is omit-
ted as we can perform a reweight trick by tuning the balance pa-
rameter λ of these two tasks.

3.2 Graph based Adversarial Learning for
Fairness Modeling

Given the sensitive attribute vector xi , a naive idea is to design the
value function based on the current node’s embedding as:

VN = E(u,v,r ,xu )
K∑
k=1

xuk lnD
k (fu ). (7)

In fact, the above value function only considers the fairness in
the filtered embedding space with independence assumption of
users. In recommender systems, users and items form a user-item
bipartite graph. For each user u, we use Gu to denote the ego-
centric network of user u in the user-item graphG . Specifically, the
ego-centric network Gu takes u as the central node, and is a local
neighborhood network that spans from u. With the ego-centric
network Gu of u, the goal towards fairness requirements is that,
u’s sensitive attribute is not exposed by her local network Gu .

The above Eq.(7) simplifies the user-centric graphGu as a filtered
node level representation, i.e., fu . Nevertheless, the independence
assumption among users is not well supported in the user-item
bipartite graph. In fact, the collaborative correlations between users
are the foundation for building recommender systems. In the user-
item bipartite graph G, users are correlated through items in this
graph structure. Trivial global representation fu of each user u may
not well capture the local graph structure of this user. Therefore,
given the filtered node embedding space, we also seek to obtain an
ego-centric graph based structure representation of each user u as:

pu = P(Gu, F) = P(Gu, F(G, E, X))), (8)

where P is a structure representation function of the local graph
summary of a user, and pu is the output of the patch network that
summarizes user u from her ego-centric graph structure Gu .E.g.,
it can be an aggregation of a user’s up to L-th order neighbor-
hood representation, or can be implemented with state-of-the-art
sophisticated graph representation learning models [36].

Similar as Eq.(7), given the local graph structure summary pu
of each user u, we also employ adversarial training to ensure each
user’s sensitive attributes are not exposed by local graph structure:

VS = E(u,v,r ,xu )
K∑
k=1

xuk lnD
k (pu ). (9)

As such, the fairness requirement is defined under the graph
based adversarial learning process, with each user’s ego-centric
network structure is summarized as both the node-level based
value function in as shown in Eq.(7) and the graph structure level
function in Eq.(9). Then, the fairness based value function VG is a
combination of these two parts as: VG = VN +VS , where the first
part captures the node-level fairness, and the second part models
the ego-centric fairness.

3.2.1 Summary Network for Ego-centric Graph. Now we focus on
how to model ego-centric fairness based value functionVS . In other
words, we need to build a summary network pu for better ego-
centric representation.

Weighted Average Pooling. A simple yet effective implemen-
tation of the ego-centric graph summary structure as:

pu = P(Gu, F) =
∑
v∈Au ruv fv∑
v∈Au ruv

, (10)

where pu is the average filter embedding of local first order neigh-
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Figure 2: The overall structure of our proposed FairGo model.

bors of user u given the graph Gu .
The above pooling technique is adopted for summarizing first

order user-centric network, i.e., the direct connected neighbors
of user u. For modeling the up to L-th higher order user-centric
network, we extend Eq.(10) to aggregate the up to L-th order ego-
centric graph structure as:

h1
i =

∑
j∈Ai (ai j fj )∑
j∈Ai ai j

, ∀l ≥ 2, hli =
∑
j∈Ai (ai jh

l−1
j )∑

j∈Ai ai j
(11)

pu =
1
L

L∑
l=1

hlu (12)

,where ai j is an edge weight in edge weight matrix A (Eq.(1)). Ai
is the subset that directly connects to node i in this matrix. Eq.(11)
calculates each node’s l-th order ego-centric graph representation,
and Eq.(11) averages each layer’s representation as the ego-centric
representation.

However, this simple average aggregation fails, as it does not
account for the different higher graph structure in the modeling
process. As illustrated in Figure 1, as l increases, each l-th order
neighbor becomes more distant from the current user, and the ability
of distant neighbors to expose this user’s sensitive information
becomes smaller compared to the closer neighbors.

Local Value Aggregation. For each user u, instead of directly
modeling the up-to-K-th order subgraph representation, we argue
that her sensitive attribute is better not exposed by any l-th layer
user-centric graph structure representation hlu . Let V l denote the
value function of the l-th subgraph structure, we have the following
value function:

V l
S = E(u,v,r ,xu )

K∑
k=1

xuk lnD
k (hlu ). (13)

After that, the subgraph based value function in Eq.(9) is a com-
bination of the up to L-th order value function:l

VS = λ1V 1
S + ... + λlV

l
S + ... + λLV L

S =

L∑
l=1

λlV
l
S , (14)

where λl is a balance parameter that needs to be tuned to balance
different l-th order value function. The larger the λl , the more
important this l-th order value function.

Learning based Aggregation. The above local value aggrega-
tion function needs to involve human labor to manually tune the
balance parameter λl . For each user u, we propose to directly learn
the ego-centric representation pu with each l-th layer representa-
tion hlu . We propose to adopt deep neural networks to learn the

sub-graph representation. We use a Multilayer Perceptron (MLP)
to model the non-linear aggregation of all layers for sub graph
representation, as MLPs are powerful to approximate any universal
complex functions [11]. Specifically, the learning based aggregation
involves an MLP to learn the final ego-centric graph embedding as:

pu = MLP (h1
u, h

2
u, ..., h

L
u ), (15)

where the learnable parameters are the parameters in the MLP
structure, which can be learned with other parameters in a unified
training procedure.

Please note that, someone may argue that there are advanced
graph embedding models with carefully designed architecture for
learning the ego-centric graph representation. As the focus of this
paper is not to design more sophisticated graph embedding models,
we use a simple yet effective summary network for ego-centric
graph representation, and focus on whether modeling the graph
structure is effective for fair representation learning.

4 THEORETICAL ANALYSIS
In this section, we theoretically analyze the implications of our
proposed model.

Specifically, in the supplementary material, we show that the
overall value function in Eq.(4) can be seen as independent combi-
nations of each sub discriminator Dk with attribute k . Without loss
of generality, we consider the overall value function with regard to
the k-th attribute is:

V (F ,Dk ) = E
(u,v,r,x )∼p(E,R,X)

[lnqR (r |F (Gu ,E,X))− (16)

λK lnqDk (xuk |F (Gu ,E,X))].

Since both the rating prediction part and the discriminator rely
on the filtered embeddings F = F (G,E,X) that is directly filtered
from the original embeddings E from any recommendation model,
we define an alternative distribution over the filtered embedding
space F as follows:
p̂(fu , fv , pu , r, x ) =

∫
eu ,ev

p̂(eu , ev , fu , fv , pu , r, x )d (eu , ev )

=

∫
eu ,ev

p(eu , ev , r, x )pF (fu , fv , pu |eu , ev )d (eu , ev )

=

∫
eu ,ev

p(eu , ev , r, x )δ (F(Gu , E, X) = (fu , fv , pu ))d (eu , ev ).

(17)

With the alternative distribution that relies on the filtered em-
bedding space in Eq.(24), we replace Eq.(23) to:
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V (F ,Dk ) = E
(fu ,fv ,pu ,r,x )∼p̂(fu ,fv ,pu ,r,x )

[lnqR (r |F (Gu ,E,X))−

(18)
λK lnqDk (xuk |F (Gu ,E,X))].

After that, we have the following propositions.
Lemma 1. If the discriminator network has enough capacity, the

optimal solution of q∗
Dk is p̂(xuk |fu , pu ).

Proof. Given the equality constraints of the predicted proba-
bility distribution

∑
x qDk (xuk |(fu , pu )) = 1, we can obtain the

Lagrangian dual optimization problem, and solve it. We show the
details of this proof in the supplementary material. □

Lemma 2. When λ → ∞, if both the filter F and the discriminator
D have enough capacity, and at each step the discriminator and filter
are allowed to reach their optimal values. Then, the filtered embedding
space is conditionally independent with the sensitive attributes.

Proof. In fact, when λ → ∞, VR disappears in Eq.(4). And the
above proposition could be easily validated if we check the proofs
in Section 4 of the original GAN model [12]. □

However, the above proposition is too strict as when λ → ∞, the
rating prediction objective VR is discarded in the proposed model.
In the following, we do not give restrictions on λ, and give a detailed
analysis of the objective function in Eq.(4).

Theorem 3. Given enough capacity of the discriminator network,
the objective function in Eq.(18) is equivalent to minF H (R|F) −
λKH (Xk |(F, P)), i.e., minimizing the conditional entropy between the
ratings and filtered embeddings, while maximizing the conditional
entropy between the sensitive attribute and the filtered embeddings.

Proof. By replacing the best discriminator in Lemma 1, the
objective goal in Eq. (18) is equal to:
arg max

F
V (F ,Dk∗

) = E
(fu ,fv ,pu ,r,x )∼p̂(fu ,fv ,pu ,r,x )

[lnqR (r |(fu , fv ))−

(19)
λK ln p̂(xuk |(fu , pu ))]
= −H (R|F) + λKH (Xk |(F, P)).

(20)

□

By combining Eq.(4) and Theorem 3, we can easily extend the
above theory to multiple sensitive attributes as:

arg max
F

V (F ,D) = −H (R|F) + λ
K∑
k=1

H (Xk |(F, P)). (21)

Therefore, we have the following theorem as:

Theorem 4. Given enough capacity of the discriminator network,
the objective function in Eq.(4) is equivalent to minF[H (R|F)−
λ
∑K
k=1 H (Xk |(F, P))], i.e., minimizing the conditional entropy be-

tween the ratings and filtered embeddings, while maximizing the
conditional entropy between each sensitive attribute and the filtered
embeddings.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. MovieLens-1M is a benchmark dataset for recommender
systems [15]. The dataset contains 6040 users’ 1 million rating
records to about 4000 movies. Users are associated with three at-
tributes, including gender (two classes), age (seven classes), and
occupation (21 classes) 1. Similar as the previous works for fair-
ness based recommendation [3], we split the historical ratings into
training and test with a ratio of 9:1.

Lastfm-360K is a music recommendation dataset that contains
users’ ratings to artists collected from the music website of Last.fm [4].
The dataset contains about 360 thousand users’ 17 million records
to 290 thousand artists. We treat the play times as the rating values.
As the detailed rating values are in a large range, we first prepro-
cess ratings with log transformations, and then normalize ratings
into range 1 to 5. Users are associated with a profile, including
gender (two classes), and age. For the age attribute, we transform
ages into three classes 2. Similar as many classical recommendation
data split approaches, we split the historical ratings into training,
validation, and test parts with the ratio of 7:1:2.

Experimental Setup and Evaluation. Our model involves
three steps, a pretrained recommendation algorithm, followed by
the proposed FairGo model for fairness consideration. After that,
we need to evaluate the fairness performance. We first use the train-
ing data to complete the first two steps, with the rating records
in the training data as ground truth preference data, and the user
attributes in the training data as ground truth sensitive informa-
tion. The validation data is used for model parameter tuning. When
finishing the model training, in order to evaluate whether the sen-
sitive information is exposed by the learned model, similar as many
works for fairness models [3, 23], we randomly select 80% users’
attributes as ground truth and train a linear classification model by
taking the learned fair representations. We test the classification
accuracy on the remaining 20% users for fairness evaluation.

For measuring the recommendation performance, we use Root
Mean Squared Error (RMSE) metric [17]. For measuring the fair-
ness goal, we calculate classification performance of the 20% test
users. As the binary attribute (i.e., gender) is imbalanced on both
datasets, with about 70% males and 30% females, we use Area Un-
der Curve (AUC) metric for measuring binary classification per-
formance. For the remaining attributes with multiple values, we
use micro-averaged F1 measure [13]. AUC or F1 can be used as a
measure of whether the sensitive gender information is exposed
in the representation learning process. The smaller values of these
classification metrics denote better fairness performance with less
sensitive information leakage.

As our proposed model is model-agnostic and can be applied to
fair recommendation with multiple attributes, we design several
experiments with different settings for model evaluation. First, we
choose two base recommendation models: a free latent embedding
model of PMF [24] and a state-of-the-art GCN based recommen-
dation model [21]. As this GCN based recommendation model is
originally designed with ranking based loss function, we modify it
to the rating based loss function, and add the detailed rating values
1https://grouplens.org/datasets/movielens/
2http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html
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Table 1: Performance on MovieLens-1M. We test performance on both the single attribute and the compositional setting with
multiple sensitive attributes (denoted as Com.). Smaller values mean better performance.

Sensitive Att. PMF GCN Non-parity ICML_2019 FairGo_PMF FairGo_GCN
RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1

Gen.

0.8681

0.6615

0.8564

0.7041 0.8621 0.8428 0.9203 0.5175 0.9150 0.5042 0.9068 0.5042
Age 0.3821 0.4215 \ \ 0.9203 0.3420 0.9059 0.3220 0.9051 0.3140
Occ. 0.1332 0.1485 \ \ 0.9186 0.1190 0.9367 0.1130 0.9069 0.1070
Com.-Gen. 0.6615 0.7041 \ \

0.9191
0.5389

0.9325
0.5026

0.9185
0.5134

Com.-Age 0.3821 0.4215 \ \ 0.3620 0.3380 0.3260
Com.-Occ. 0.1332 0.1485 \ \ 0.1240 0.1060 0.1250

Table 2: Performance on Lastfm-360K.

Sensitive Att. PMF GCN Non-parity ICML_2019 FairGo_PMF FairGo_GCN
RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1

Gen.

0.7112

0.5506

0.7034

0.5696 0.7346 0.6649 0.7259 0.5409 0.7096 0.5428 0.7072 0.5354
Age 0.4695 0.4716 \ \ 0.7204 0.4682 0.7195 0.4689 0.7061 0.4672
Com.-Gen 0.5506 0.5696 \ \ 0.7173 0.5379 0.7081 0.5347 0.7049 0.5367
Com.-Age 0.4695 0.4716 \ \ 0.4688 0.4681 0.4662

in the graph convolution process to facilitate our setting. Second,
as the sensitive attribute setting varies, we perform experiments
on both the single sensitive attribute setting and the compositional
setting with multiple sensitive attributes. For example, we have
three settings of one single sensitive attribute, i.e., gender, age,
and occupation, and one compositional setting of three sensitive
attributes on MovieLens-1M dataset.

Baselines and Parameter Setting. We compare our proposed
model with the following baselines, including state-of-the-art rec-
ommendation models of PMF [24] and GCN [21]. To explicitly
model the fairness metrics, we choose a state-of-the-art model that
can leverage multiple sensitive attributes, i.e., ICML_2019 [3] as a
baseline. Besides, we choose a fairness regularization based model,
i.e., Non-parity [29] as a baseline. Given a binary valued sensitive
attribute, Non-parity defines different metrics for unfairness and
incorporates the corresponding unfairness regularization terms for
recommendation. Each unfairness metric is based on the average
rating prediction of the advantaged group with attribute value of
1 and the remaining group with attribute value of 0. Due to the
constraint that Non-parity is suitable for binary valued attributes,
we apply this baseline to the gender attribute on the two datasets.

In practice, in our proposed FairGo model, we choose MLPs as
the detailed architecture of each filter and each discriminator. The
filtered embedding size is set as D = 64. For MovieLens dataset,
each filter network has 3 layers which the hidden layer sizes as
128 and 64 respectively, and the discriminator has 4 layers which
the hidden layer sizes are 16 and 8 respectively. For Lastfm-360K
dataset, each filter network has 4 layers with the hidden layer sizes
as 128, 64, 32 respectively, and each discriminator has 4 layers with
the hidden layer sizes as 16, 8, and 4. We use LeaklyReLU as the
activation function. The balance parameter λ in Eq.(4) is set as
0.1 on MovieLens and 0.2 on Lastfm-360K. All the parameters are
differentiable in the objective function, and we use Adam optimizer
with the initial learning rate of 0.005.

5.2 The Overall Performance
We report the overall results in Table 1 and Table 2. In these two
tables, our proposed FairGo adopts the simple ego-centric graph
representation with weighted first order aggregation in Eq.(10). We

have several observations from this table. First, when comparing
the results of two state-of-the-art recommendation models of PMF
and GCN, GCN has better recommendation performance (smaller
RMSE values) and exposes more sensitive information (larger clas-
sification metric values). This is due to the fact that GCN directly
models the graph structure for embedding learning, which allevi-
ates the sparsity issue, and discovers some hidden features that
are correlated with sensitive feature set. Second, we observe that
all models that directly consider the sensitive information filter
would decrease the recommendation performance to 5% to 10%,
as we need to eliminate any latent dimensions that are useful for
rating, but may expose the sensitive attribute. Non-parity does
not achieve satisfactory performance on these two dataset. We
guess a possible reason is that, the Non-parity baseline measures
the discrepancy of the predicted ratings of the two groups, and
does not directly remove sensitive attribute information in embed-
dings. When comparing these fairness-aware models, FairGo_GCN
considers the correlation of entities from a graph perspective and
reaches the best performance for both the rating prediction and fair-
ness elimination task. As to the FairGo_PMF, it has better fairness
performance compared to ICML_2019, but the recommendation
performance of RMSE is not consistent, as it shows worse perfor-
mance in the compositional setting. This is due to the fact that the
base model (i.e., PMF) in FairGo_PMF does not perform well as
base graph embedding model. Please note that, the fairness results
of occupation have a large variance. We guess a possible reason
is that, the occupation values are imbalanced and have 21 distinct
values. Given limited 6040 users, the adversary network is hard
to train in practice. For the Lastfm dataset, Table 2 shows a simi-
lar overall trend as analyzed above. Therefore, we conclude that
our proposed FairGo framework could improve fairness with very
little recommendation accuracy loss. By using a more advanced
base recommendation model, our proposed FairGo_GCN reaches
the best performance for both recommendation and fairness. In
the following, we choose FairGo_GCN for detailed analysis since
FairGo_GCN shows better recommendation and fairness compared
to FairGo_PMF.
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Table 3: Performance of different summary networks for ego-centric structure on MovieLens-1M, with “value” denotes the
local value function aggregation, and “learning” denotes the learning based aggregation.

Senstive Att.
FairGo_PMF FairGo_GCN

L=1 L=2(value) L=2(learning) L=1 L=2(value) L=2(learning)
RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1

Gen. 0.9150 0.5042 0.9082 0.5045 0.9055 0.5018 0.9068 0.5042 0.9070 0.5065 0.9004 0.5014
Age 0.9059 0.3220 0.9077 0.3200 0.9001 0.3160 0.9051 0.3140 0.9036 0.3080 0.9045 0.3100
OCC. 0.9367 0.1130 0.9332 0.1150 0.9186 0.1060 0.9069 0.1070 0.9079 0.1090 0.9010 0.1000

Table 4: Performance of different summary networks for ego-centric structure on Lastfm-360K.

Senstive Att.
FairGo_PMF FairGo_GCN

L=1 L=2(value) L=2(learning) L=1 L=2(value) L=2(learning)
RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1 RMSE AUC/F1

Gen. 0.7096 0.5428 0.7025 0.5361 0.7020 0.5357 0.7072 0.5354 0.7091 0.5442 0.7068 0.5337
Age 0.7195 0.4689 0.7082 0.4678 0.7099 0.4666 0.7061 0.4672 0.7015 0.4691 0.7047 0.4669

5.3 Detailed Model Analysis
Performance of different user-centric subgraph modeling.
In this part, we would like to explore the performance under differ-
ent higher order graph modeling techniques. We focus on the exper-
imental settings on single attribute. We conduct experiments on the
two proposed approaches: local value function aggregation (Eq.(14))
and learning based aggregation (Eq.(15)) with second-order user-
centric subgraph. Specifically, the local value function aggregation
is calculated as VS = λ1V 1

S + λ2V 2
S , while the two parameters λ1

and λ2 are set to 4 : 1 in FairGo_PMF and 1 : 1 in FairGo_GCN.
The MLP structure in the learning based aggregation has two non-
linear layers and one linear layer. The results on MovieLens and
Lastfm-360K are shown in Table 3 and Table 4. As can be observed
from both tables, the learning based aggregation shows the best
performance for all settings. The local value function aggregation
shows better performance than the first order neighborhood mod-
eling for most settings, as it relies on manual tuning of balance
parameters. Therefore, we empirically conclude higher order graph
structure can achieve better fairness results. By using the learning
based subgraph modeling, our proposed model can further improve
recommendation accuracy and fairness. However, we notice that
modeling the higher order graph structure also introduces more
runtime, and more difficulty in the model training process.

Please note that when considering the second order local graph
structure, on average each user’s ego-centric graph includes 10%
nodes on MovieLens-1M and about 5000 nodes on Lastfm-360K. If
we further increase the layer size to 3, each user’s subgraph largely
overlaps with the subgraph of other users. Therefore, we do not
report the results with more than 3 layers.

(a) MovieLens-1M (b) Lastfm-360K

Figure 3: Performance of statistical parity measure.

Relation to group fairness. As there are many fairness met-
rics, in this part, we would show the results of our proposed model

(a) MovieLens-1M (b) Lastfm-360K

Figure 4: Performance of equal opportunity measure.

on group fairness measures. For all group fairness based metrics, sta-
tistical parity and equal opportunity are widely used. For attributes
with multiple values, we borrow the idea of statistical parity. For
attributes with binary values, we use the equal opportunity. The
concrete formulas of two group fairness metrics is recorded in the
supplementary material. We show the results of statistical parity
and equal opportunity in Figure 3 and Figure 4. In short, our pro-
posed model achieves the best results for binary gender attribute.
Our proposed model also reaches the best results for the two group
based fairness metrics on Lastfm-360K dataset.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we argued that most current works on fairness based
models assumed independence of instances, and could not be well
applied to the recommendation scenario. To this end, we proposed a
FairGo model that considered fairness from a graph perspective for
any current recommendation models. The proposed framework is
model-agnostic and can be applied to multiple sensitive attributes.
Experimental results on real-world datasets clearly showed the
effectiveness of our proposed model. In the future, we would like
to explore the potential of our proposed model to domain specific
applications, such as job or education recommendation.
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A PROOFS
We give the details of some proofs in Section 4, i.e., correlation
between the overall value function (Eq.(4)) and the sub value func-
tion (Eq.(16)), and proofs of lemma 1.

A.1 Correlation between the overall value
function (Eq.(4)) with multiple attributes
and the sub value function (Eq.(16)) that
deals with a single attribute.

The overall value function can be written as:

V (F, D) = E
(u,v,r ,x )∼p(E,R,X)

[lnqR (r |(fu , fv , pu )) − λ lnqD (xu |(fu , fv , pu ))].

= E
(u,v,r ,x )∼p(E,R,X)

[lnqR (r |(fu , fv , pu ))]

− λ
K∑
k=1

E
(u,v,r ,x )∼p(E,R,X)

lnq
Dk (xuk |(fu , fv , pu ))

= 1/K
K∑
k=1

E
(u,v,r ,x )∼p(E,R,X)

[lnqR (r |(fu , fv , pu ))

− λK lnq
Dk (xuk |(fu , fv , pu ))],

(22)

where (fu , fv , pu ) = F (Gu ,E,X) is the mapping function from
the origin embedding space to the filtered embedding space, and
pu is summarized from the filtered embedding space. This Eq. (22)
corresponds to Eq.(4) in Section 3. Thus, the overall value function
can be easily seen as a combination of each sub discriminator Dk

with attribute k . Without loss of generality, we consider the overall
value function with regard to the k-th attribute as:

V (F, Dk ) = E
(u,v,r ,x )∼p(E,R,X)

[lnqR (r |(fu , fv , pu ))−λK lnq
Dk (xuk |(fu , fv , pu ))].

(23)
This Eq. (23) corresponds to Eq.(16) in Section 4.

Since both the rating prediction part and the discriminator rely
on the filtered embeddings F = F (Gu ,E,X), we define an alterna-
tive distribution over the filtered embedding space F as follows:

p̂(fu , fv , pu , r, x ) =
∫
eu ,ev

p̂(eu , ev , fu , fv , pu , r, x )d (eu , ev )

=

∫
eu ,ev

p(eu , ev , r, x )pF (fu , fv , pu |eu , ev )d (eu , ev )

=

∫
eu ,ev

p(eu , ev , r, x )δ (F(Gu , E, X) = (fu , fv , pu ))d (eu , ev ).

(24)

With the alternative distribution that relies on the filtered embed-
ding space in Eq.(24), we replace Eq.(23) to:

V (F, Dk ) = E
(fu , fv ,pu ,r ,x )∼p̂(fu , fv ,pu ,r ,x )

[lnqR (r |(fu , fv , pu ))

− λK lnq
Dk (xuk |(fu , fv , pu ))],

= E
(fu , fv ,pu ,r ,x )∼p̂(fu , fv ,pu ,r ,x )

[lnqR (r |F(Gu , E, X))

− λK lnq
Dk (xuk |F(Gu , E, X))]. (25)

This Eq. (25) corresponds to Eq.(18) in Section 4.
From the above, we can split multiple attributes into independent

combinations of single attributes for analysis. Thus, the analysis
of a single attribute can be easily extended to multiple attributes
naturally.

A.2 Proofs of Lemma 1
Lemma 5. If the discriminator network has enough capacity, the

optimal solution of q∗
Dk is p̂(xuk |fu , pu ).

Proof. We begin with the value function with regard to the k-th
attribute in the filtered embedding space:
V (F, Dk ) = E

(fu , fv ,pu ,r ,x )∼p̂(fu , fv ,pu ,r ,x )
[lnqR (r |F(Gu , E, X))

− λK lnq
Dk (xuk |F(Gu , E, X))].

(26)

Note that, pu is an aggregation of fu and fv , and fv is irrelevant to
the best solution for discriminator. In the above value function, with
the fixed embeddings F, only the second term−λK lnq

Dk (xuk |F(Gu, E, X)
is correlated with the discriminator. Given the equality constraints of the
predicted probability distribution

∑
x qDk (xuk |(fu, pu )) = 1, we can ob-

tain the Lagrangian dual optimization problem:

L(α (h)) =
∑
h

α (h)(1 −
∑
x
q
Dk (xuk |(fu , pu )))

− E
(fu , fv ,pu ,r ,x )∼p̂(fu , fv ,pu ,r ,x )

λK lnq
Dk (xuk |(fu , pu )).

(27)

To seek the maximum value of L(α (h)), we take the partial derivative of
q
Dk and let the partial derivative equals 0.

∂L(α (h))
∂q∗

Dk (xuk |(fu , pu ))

= −
∑
h

α (h) −
E(fu , fv ,pu ,r ,x )∼p̂(fu , fv ,pu ,r ,x )λK lnq

Dk (xuk |(fu , pu ))

∂q∗

Dk (xuk |(fu , pu ))

= −
∑
h

α (h) − E(fu , fv ,pu ,r ,x )∼p̂(fu , fv ,pu ,r ,x )(
λK

q∗

Dk (xuk |(fu , pu ))
).

(28)

By letting Eq.(28) equals zero, and we employ the equality constraint as∑
x qDk (xuk |(fu, pu )) = 1, we get:

∑
h

α (h) = −λK
∑
r p̂(fu, fv , pu, r, x )
q∗
Dk (xuk |(fu, pu ))

= −λKp̂(fu, pu ). (29)

After that, we substitute Eq.(29) back to Eq.(28) to get the optimal dis-
criminator as:

q∗
Dk (xuk |(fu, pu )) = p̂(xuk |fu, pu ). (30)

□

B DETAILS OF GROUP FAIRNESS RESULTS
In this part, we measure fairness based on the classification accu-
racy of each sensitive attribute. Then, we show the results of our
proposed model on group fairness measures.

B.1 Statistical Parity
For all group fairness based metrics, statistical group parity is widely
used to measure the predicted rating discrepancy for binary val-
ued sensitive attribute [3, 34]. Correspondingly, we measure the
statistical parity of binary attribute (i.e., gender) in recommenda-
tion as: 1/N

∑N
v=1 ∥Eu ∈male [r̂uv ] − Eu ∈female [r̂uv ]∥. For attributes

with multiple values, we borrow the idea of statistical parity and bin
users into different groups based on the different attribute values.
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Then, we take the standard deviation of predicted ratings of each
user group to measure statistical parity.

B.2 Equal Opportunity
Besides statistical group parity, equal opportunity is also a widely
used group fairness metric. Equalized opportunity advances statisti-
cal group fairness by considering the parity of prediction accuracy
of each group [14]. The equal opportunity measures group fairness
of binary attribute (i.e., gender) as:

1/N
N∑
v=1

∥Eu∈male [ | |r̂uv − ruv | |] − Eu∈female [ | |r̂uv − ruv | |] ∥ .

For attributes with multiple values, we use the idea of equal
opportunity for binary values of attribute, and take the standard

deviation of equal opportunity of each user group to measure group
fairness. We only list our proposed FairGo under GCN as it shows
better performance under PMF. Besides, the performance on Non-
parity is only calculated for the binary attributes.

As shown in Figure 3 and Figure 4, our proposed model achieves
the best results for binary gender attribute. Our proposed model
also reaches the best results for the two group based fairness metrics
on Lastfm-360K dataset. However, our proposed model could not
perform the best for sensitive attributes with multiple attributes on
MovieLens under the equal opportunity metric. We guess a possible
reason is that, the adversarial training process of FairGo relies on
sufficient user data for training. As MovieLens is much smaller
than Lastfm-360K, the performance drops when the attribute has
multiple values with limited records.
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