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Abstract

Large Language Models (LLMs) have achieved remarkable
success in recent years, owing to their impressive general-
ization capabilities and rich world knowledge. To capitalize
on the potential of using LLMs as recommender systems,
mainstream approaches typically focus on two paradigms.
The first paradigm designs multi-domain or multi-task in-
struction data for generalizable recommendation, so as to
align LLMs with general recommendation areas and deal
with cold-start recommendation. The second paradigm fo-
cuses on enhancing domain-specific recommendation tasks,
improving performance in warm recommendation scenarios.
While most previous works treat these two paradigms sepa-
rately, we argue that they have complementary advantages,
and combining them can yield better results. In this paper,
we propose a generalizable and efficient LLM-based rec-
ommendation framework RecCocktail. Our approach begins
with fine-tuning a “base spirit” LoRA module using domain-
general recommendation instruction data to align LLM with
recommendation knowledge. Next, given users’ behavior of a
specific domain, we construct a domain-specific “ingredient”
LoRA module. We then provide an entropy-guided adaptive
merging method to mix the “base spirit” and the “ingredient”
in the weight space. Please note that, RecCocktail combines
the advantages of the existing two paradigms without intro-
ducing additional time or space overhead during the infer-
ence phase. Moreover, RecCocktail is efficient with plug and
play, as the “base spirit” LoRA is trained only once, and any
domain-specific “ingredient” can be efficiently mixed with
only domain-specific fine-tuning. Extensive experiments on
multiple datasets under both warm and cold-start recommen-
dation scenarios validate the effectiveness and generality of
the proposed RecCocktail.

Code — https://github.com/1149722739/RecCocktail

1 Introduction

Large Language Models (LLMs) have demonstrated signif-
icant success across diverse fields, driven by their emer-
gent capabilities such as world knowledge, language under-
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standing, and complex reasoning. Recently, LLMs have in-
troduced transformative advancements to recommendation
tasks (Xi et al. 2024; Deng et al. 2022; Geng et al. 2022; Hou
et al. 2025). Along this line, the emergence of ChatGPT and
its remarkable reasoning capabilities have catalyzed early
studies (Dai et al. 2023; Sanner et al. 2023; Wang et al.
2023). These works focus on the zero-shot/few-shot recom-
mendation potential of LLMs through in-context learning.
However, the intrinsic gap between the pre-training general
text corpus of LLMs and the requirements of recommenda-
tion tasks results in suboptimal performance when relying
solely on in-context learning. Consequently, the key to de-
veloping an effective LLM-based recommender system lies
in bridging this gap, enabling the model to truly “under-
stand” how to recommend.

To address this challenge, researchers have proposed a va-
riety of approaches. We classify them into two paradigms,
each tackling the problem from a distinct perspective. As
shown in Figure 1(1), the first one is summarized as the
breadth-oriented paradigm. These works integrate multi-
domain (Tang et al. 2024) or multi-task (Geng et al. 2022;
Zhang et al. 2024; Cui et al. 2022) recommendation data
to construct extensive recommendation world knowledge,
paving the way for developing a generalizable LLM-based
recommender. The key focus of this paradigm is the in-
tegration of multi-source data to build instruction-tuning
datasets (Peng et al. 2024; Jin et al. 2023) and the design of
instruction templates (Zhang et al. 2024; Geng et al. 2022)
tailored to various tasks. The second paradigm is termed the
depth-oriented paradigm, illustrated in Figure 1(2). This
line of research seeks to enable LLMs to deeply compre-
hend recommendation tasks within specific domains. Key
areas of focus include: the in-depth extraction of domain-
specific recommendation knowledge, such as collaborative
filtering information (Lin et al. 2024a; Kim et al. 2024;
Liao et al. 2024; Ren et al. 2024; Kong et al. 2024), and
the development of efficient and effective alignment meth-
ods between LLMs and recommendation tasks. Specifically,
compared with enormous parameters in LLMs, downstream
tasks do not have sufficient data for tuning all parameters.
Therefore, parameter-efficient fine-tuning methods become
optimal for applying LLMs, in which lightweight Low-Rank
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Figure 1: Illustration of different LLM-based recommendation paradigms. (1) Breadth-oriented paradigm. (2) Depth-oriented

paradigm. (3) Our proposed RecCocktail.

Adapter (LoRA) is one representative work (Hu et al. 2022).
By borrowing ideas of LLMs, these methods include lever-
aging (Bao et al. 2023) or enhancing (Kong et al. 2024)
LoRA fine-tuning techniques and designing data-efficient
fine-tuning strategies (Lin et al. 2024b).

These works make significant advancements in recom-
mendation research. Nevertheless, we argue that these two
paradigms have complementary advantages. Both general-
izable recommendation knowledge and efficient domain-
specific understanding are essential for recommender sys-
tems. Relying solely on one aspect risks falling short in ad-
dressing the diverse challenges in real-world recommenda-
tion scenarios. The breadth-oriented paradigm may under-
perform in specific domains. Conversely, the depth-oriented
paradigm struggles with distribution shifts between training
and test data. It faces challenges when new users or items
appear or when training data are sparse.

To this end, we investigate how to integrate the advantages
of both paradigms to simultaneously enhance the model’s
generalization ability and domain-specific performance. The
task creates significant obstacles: (1) Efficiency. Integrating
two paradigms may introduce model complexity, and find-
ing an efficient integrating method without excessive com-
putational overhead is a critical challenge. (2) Generalizabil-
ity. We need to preserve the model’s generalization abil-
ity to a large extent, enabling it to quickly scale to new
domains, new items, and other new recommendation sce-
narios. In this paper, we propose a generalizable and effi-
cient recommendation framework named RecCocktail, in-
spired by the cocktail preparation process, as shown in Fig-
ure 1(3). Specifically, to align LLM with any recommenda-
tion task, RecCocktail constructs a general recommendation
instruction dataset from multiple recommendation domains,
and fine-tunes LLM to get a domain-general LoRA mod-
ule as “base spirit”. Secondly, to tailor the framework for
specific domains, RecCocktail constructs domain-specific
instruction datasets, and fine-tunes LLM to get a domain-
specific LoORA module as “ingredient”. After that, RecCock-
tail performs a highly efficient and effective linear arith-
metic operation to merge the “base spirit” and the “ingre-
dient” LoRA within the weight space, allowing RecCock-

tail to maintain strong recommendation performance across
both specific domains and out-of-distribution scenarios. To
further enhance the merging process, we also introduce an
adaptive merging method guided by entropy minimization
during test time. Importantly, RecCocktail does not intro-
duce additional time or space overhead during the inference
phase. Furthermore, RecCocktail is designed for ease of use,
allowing for a plug-and-play integration where the “base
spirit” is trained once, and domain-specific “ingredients” are
incorporated through minimal fine-tuning. Finally, extensive
experiments conducted on various datasets demonstrate the
effectiveness and generalizability of the framework in multi-
ple recommendation scenarios, highlighting its potential for
broad application.

2 Preliminary
2.1 LLM-Based Recommendation

e Task Formulation. Let I/ and 7 represent the sets of users
and items, respectively. The historical interaction sequence
of a user u € U is denoted as S,, = [ii,iiw..,iﬂ, ar-
ranged in chronological order, where i,, € Z and L = |S,|.
The goal is to predict this user’s next liked item i£+! € 7
based on the historical interactions.

e Instruction Tuning for LLM-Based Recommendation.
For LLM-based recommendation, instruction tuning (Wei
et al. 2022) is the key step to bridge the gap between the
next-word prediction objective of LLMs and the recommen-
dation task (Bao et al. 2023; Kong et al. 2024; Lin et al.
2024b). Formally, instruction tuning involves fine-tuning
LLMs using training data organized as explicit instruction
pairs {(x,,y.)|u € U}. Here, x,, represents a detailed tex-
tual instruction that encapsulates the interaction sequences
S, and the recommendation task, while y,, corresponds to
the textual description of the predicted item 7Z+!. The in-
struction fine-tuning process is guided by minimizing the
following autoregressive loss function:
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where y!, denotes the ¢-th token of the output sequence y,,



vt is the token sequence preceding 3!, and © is the LLM’s
model parameters.

2.2 Instruction Tuning with LoRA

In traditional fine-tuning as described in Eqn. (1), updat-
ing all parameters makes the process highly computation-
ally intensive, particularly for LLMs. To address this issue,
parameter-efficient methods are designed to fine-tune LLMs
while updating only a small subset of parameters. Low-Rank
Adaptation (LoRA) (Hu et al. 2022) is the mainstream ap-
proach. LoRA addresses this issue by introducing low-rank
matrices that are trained alongside the frozen original model
weights. This allows the model to adapt to specific tasks by
learning a small number of additional parameters, without
requiring modifications to the entire model.

Specifically, for any pre-trained weight matrics W €
R*k in the transformer block of the LLM, which takes an
input € R¥ and output h. LoRA modifies h = Wz to:

h=Wuyx+ BAxz, 2)

where B € R4*", A € R"** are the low-rank projection
matrices. Notably, the rank r < min(d, k), ensuring that
the number of parameters introduced by B A is significantly
fewer than those of Wy, as dr + rk < dk. During fine-
tuning, only A and B are updated, while W remains fixed.
In a similar way, LoRA adapter is generally applicable to
any LLM layer desired for updating. The training objective
of LoRA fine-tuning can be formulated as:
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Here, Oy is the parameters of the pre-trained LLM. A© =

{A', B'}[ | denotes the set of parameters of LoRA fine-
tuning, and L represents the number of LoRA modules.

3 Methodology

In this section, we propose RecCocktail, a generalizable,
effective, and efficient LLM-based recommendation frame-
work. As shown in Figure 2, RecCocktail operates through
three key stages. We start by preparing the base spirit. We
align the LLM with any recommendation task and fine-tune
a domain-general LoRA module as the base spirit (Section
3.1). Secondly, to adapt the framework to a specific do-
main, we fine-tune the domain-specific LoORA module (Sec-
tion 3.2) as an ingredient. Subsequently, RecCocktail per-
forms an efficient linear arithmetic operation to merge the
base spirit LoRA and the ingredient LoRA into a cock-
tail within the weight space (Section 3.3). We further pro-
vide a test-time entropy-guided adaptive merging method
to quickly construct cocktail LoRA tailored to different in-
ference scenarios. The merged cocktail LoRA collaborative
enhances performance across both specific domains and out-
of-distribution scenarios without introducing additional time
or space overhead.

3.1 Constructing Generalizable Base Spirit

In this subsection, we construct a generalizable base spirit
equipped with general recommendation knowledge. As il-
lustrated in Figure 2(a), we first create a large-scale instruc-
tion dataset by aggregating user behavior data from multi-
ple domains. We then fine-tune a pre-trained LLM on this
dataset using the LoRA technique, resulting in a domain-
general LORA module, which serves as our base spirit.

e Instruction Dataset Construction. Given N recommen-
dation domains (i.e., DY, D2,..., DN), let U™, T, and S™ de-
note the user set, item set, and user interaction sequence set
of domain n, respectively. To provide general user modeling
and recommendation knowledge, we aggregate data from
all N domains and design instruction templates to convert
them into text format. Note that both the choice of recom-
mendation domains and the design of instruction templates
are flexible. In this paper, we adopt the template shown in
Figure 2(a). We transform the multi-domain recommenda-
tion data into an instruction dataset D, = {(x,y)}, where
x and y represent the instruction input and output, respec-
tively. The input a task description, the user’s historical in-
teractions, and a set of candidate items, all expressed in text.
Each item is represented by its title. The candidate set in-
cludes one ground-truth item and several randomly sampled
negative samples. The output is designed to rank the user’s
next most likely item.

e Tuning Domain-General LoRA Module. Given the in-
struction dataset Dy, we apply LoRA fine-tuning to adapt
the pre-trained LLM for general recommendation tasks. The
pre-trained model parameters are kept frozen, while train-
able low-rank decomposition matrices are introduced into
each layer of the Transformer architecture, enabling efficient
and lightweight tuning. Formally,

[yl
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where Op is the parameters of the pre-trained LLM, and
A®, denotes the set of parameters of LoRA fine-tuning. By
undergoing this fine-tuning step, A©, is now enriched with
extensive general recommendation knowledge.

3.2 Constructing Domain-Specific Ingredient

Each recommendation domain exhibits unique user behavior
patterns, making the acquisition of domain-specific knowl-
edge essential for delivering accurate recommendations. To
address these domain-specific characteristics, we construct
an instruction dataset D; tailored to the target domain s, and
fine-tune the pre-trained LLM using the LoRA technique.
The domain-specific LORA module serves as a ingredient of
a cocktail. As shown in Figure 2(b), the instruction template
and LoRA fine-tuning procedure follow a similar approach
to that described in Section 3.1. Formally, the training ob-
jective for the domain-specific LORA A©; is defined as:

|y
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Figure 2: Illustration of our proposed RecCocktail framework.
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improves performance on multiple tasks.

3.3 LoRA Cocktail for Plug-and-Play

After preparing the base spirit and the ingredient, we pro-
pose integrating these two parts to improve recommendation
accuracy and enhance generalization capabilities simultane-
ously. Natural questions arise: could this goal be achieved by
applying traditional ensemble learning methods that com-
bine the outputs of multiple models? Or could we integrate
general and domain-specific knowledge by directly perform-
ing second-round fine-tuning on the domain-general LoRA
module with the domain-specific dataset? Unfortunately, the
answer is no. Since LLMs generate natural language text,
ensembling their outputs can introduce semantic inconsis-
tencies or ambiguities, while also increasing inference time
and GPU memory usage. Meanwhile, performing a sec-
ond round of fine-tuning risks catastrophic forgetting (Kirk-
patrick et al. 2017), causing the model to collapse.

o LoRA Cocktail. We propose a simple yet effective method
called LoRA cocktail, which linearly merges the model pa-
rameters of the domain-general base spirit LoORA A®, and

the domain-specific ingredient LoRA A®,. We draw an
analogy to cocktail making, where mixing a base spirit with
an additional ingredient results in a drink that combines the
flavors of both parts. Formally, given the base spirit A©, =
{A;,B;}{;l and a ingredient A®, = {A', B} |, we
define the LoRA cocktail operator & as:

AO,, = (MAB,) & (A\A0,) ={Al Bl (6

Al =MAL+MAL, B, =MB,+ B, ()
where the coefficients A\; and A, represents the importance
of merging. We constraint A\; +Xs = land 0 <= A1, Ay <=
1. They can be considered hyperparameters and selected us-
ing the validation data. Please note that the mixed AO,,
maintains the same total number of parameters as one stan-
dard LoRA, making our LoRA Cocktail method simple, fast,
and effective. There is no extra cost at inference time in
terms of memory or compute, since we only do element-
wise operations on model weights. In addition, the domain-
general LoRA module is reusable. When facing a new do-
main, it is only necessary to retrain a domain-specific LoRA.

LoRA cocktail is the weight merging of the domain-
general LoRA module and the domain-specific one. Here
we explain how it works as shown in Figure 3. We find
that after fine-tuning, a LoRA module can be interpreted
as a task-specific weight update vector: A© = Oy — Op,
which defines a direction in the pre-trained model’s weight
space. Shifting the model’s weights along this direction en-
hances its performance on the corresponding task. Intu-
itively, a LoRA vector encodes all of the information needed
to solve a task that is learned via fine-tuning. Adding two
directions allows the model to move in a way that incorpo-
rates both general knowledge and domain-specific knowl-
edge. This idea aligns with the concept of “task vectors”
proposed in recent work (Ilharco et al. 2023), where weight
differences from pre-trained to fine-tuned models are shown



to encode task-specific information. These vectors, residing
in the same parameter space, can be combined to equip the
model with multiple capabilities. This is further supported
by findings that models fine-tuned from the same initializa-
tion often lie in the same error basin (Neyshabur, Sedghi, and
Zhang 2020; Zhang et al. 2023), making such linear merg-
ing feasible and effective. In this light, the LoRA cocktail
approach leverages LoRA as task vectors, enabling efficient
knowledge integration through simple vector addition.

o Entropy-Guided Adaptive Merging. As shown in Fig-
ure 2(c), we provide an efficient and automatic way to better
choose merging coefficients A\; and Ay. As discussed in the
previous subsection, A; and Ay can be chosen by employ-
ing the grid-search in the validation data. Nevertheless, (1)
it is still lacking a guiding principle. (2) When the distri-
bution of the inference data differs significantly from that
of the validation set, the chosen coefficients may perform
poorly. To this end, we introduce entropy minimization on
the unlabeled test samples as an optimization surrogate ob-
jective to update A\; and \o. Specifically, the Shannon En-
tropy (Shannon 1948) is a well-known measure of uncer-
tainty. For a sample x;, the predicted output of a neural
network Fy(x;) is y;, the Shannon entropy is calculated as
H(¥:) = = Y0 p(Fi.e) 10gp (Fi.c), where p (i ) denotes
the probability that the input x; is predicted to be the c-th
class. Lower entropy indicates that the model has lower un-
certainty about its predictions, meaning the model is more
confident in its outputs. Therefore, the intuition behind our
method is that the good coefficients A\; and Ay for the test
inputs should make the mixed model more confident in its
prediction, that is, it should lead to lower model entropy over
the input (Wang et al. 2021a,b; Yang et al. 2024). Formally,
we collect a set of unlabeled test samples Dy, i.e., some in-
struction inputs in the test time. We fix the A@ 4, AQ,, O,
and using the following entropy minimization loss to update
coefficients A1 and \s:

min H (‘F®Cockmil (Xl)) ) (8)
A1,A2
x; €Dy

where ©Ococktail = @pre + ()\1A®q) &) ()\QAG)S) )

For the LLM, the output of Fg_,,., 1S a sentence. Since our
instruction is to select a title from a given candidate set,
the first few tokens output by the model are more impor-
tant because after deciding on them, the subsequent tokens
are more certain. So in practice, we can only calculate the
average entropy of the first few tokens in the sentence to
represent H (Foc,,..)- Good performance can be achieved
with just 3 tokens. Besides, we do not need all test data to
be available. Even with only 50 unlabeled tests data, our
method can have significant performance improvements.

3.4 Discussion

o Key Advantages of RecCocktail. 1) Generalization. Rec-
Cocktail is generalizable to various recommendation sce-
narios as it can adaptively determine how to fuse domain-
general and domain-specific knowledge based on the dis-
tribution of the test data. Even in extreme cases where no
training data is available for the new domain, RecCock-

tail can still work using the generalizable base spirit. Ad-
ditionally, leveraging the in-context learning capabilities of
LLMs, RecCocktail naturally exhibits task generalization.
E.g., it can generate explainable recommendation results.
2) Efficiency. After adjusting the merging coefficients using
a few unlabeled test data, we retains only a single LoRA
module. As a result, there is no additional memory or com-
putational overhead during inference. RecCocktail offers
plug-and-play integration, where the domain-general mod-
ule is trained once, and the domain-specific plugin is incor-
porated with minimal fine-tuning.

e Comparison to Existing Methods. Traditional sequen-
tial recommendation models (e.g., GRU4Rec (Hidasi et al.
2016), SASRec (Kang and McAuley 2018)) typically rely
on explicit item IDs for modeling, limiting new do-
mains or platforms generalization. Transferable methods
address this by unifying multi-domain data in the
input space. E.g., VQ-Rec (Hou et al. 2023) and
UniSRec (Hou et al. 2022) use text representations
with contrastive pre-training for enhanced transferabil-
ity. Cross-domain sequential recommenders transfer knowl-
edge between specific domain pairs, typically requiring
shared users or items. Transferable methods build general-
purpose models transferable to any new domain usually via
pretraining-finetuning framework without requiring shared
users or items. RecCocktail belongs to transferable methods.
With LLMs’ emergence, breadth-oriented methods lever-
age their generalization capabilities. P5 (Geng et al. 2022)
unifies five recommendation tasks through a text-to-text
paradigm. These methods enhance generalization by aggre-
gating data from multiple domains/tasks. In contrast, Rec-
Cocktail takes a parameter merging approach, integrating
knowledge directly in the parameter space—offering greater
flexibility and scalability. Depth-oriented methods focus on
domain-specific alignment. TallRec (Bao et al. 2023) uses
LoRA for efficient adaptation, while LLaRA (Liao et al.
2024), iLoRA (Kong et al. 2024), and AlphaRec (Sheng
et al. 2025) align collaborative signals with LLMs. Although
this significantly enhances performance in warm-start sce-
narios, it reduces generalization for new domains and cold-
start scenarios.

4 Experiments

4.1 Experimental Settings

e Datasets. We conduct experiments on e-commerce and
movie recommendation scenarios. For the e-commerce
recommendation scenario, the domain-general instruction
tuning dataset is conducted using eight e-commerce do-
mains in Amazon! (Clothing, Cell, Grocery, Health, Home,
Pet, Tools, Videos) and validated on three domain-specific
datasets in Amazon (Beauty, Toys, Sports). For the movie
recommendation scenario, the domain-general dataset is
built using MovieLens-10M? and validated on the domain-
specific dataset MovieLens-1M.

For all datasets, items are represented using their tex-
tual “title” information. To prevent data leakage, we care-

"https://jmcauley.ucsd.edu/data/amazon/.
“https://grouplens.org/datasets/movielens/



Methods Beauty Toys Sports MovieLens-1M
NDCG@1 NDCG@3 | NDCG@1 NDCG@3 | NDCG@1 NDCG@3 || NDCG@1 NDCG@3
BPR-MF 0.1630 0.2588 0.1276 0.2056 0.1496 0.2338 0.1724 0.4185
Traditional GRU4Rec 0.1672 0.2752 0.1320 0.2243 0.1787 0.2829 0.1724 0.4423
SASRec 0.2410 0.3284 0.2223 0.3105 0.1957 0.2967 0.2257 0.4708
FMLP-Rec 0.2988 0.4000 0.2994 0.3990 0.2645 0.3812 0.2410 0.5515
Transferable UniSRec 0.2654 0.4089 0.2612 0.3998 0.2341 0.3721 0.2615 0.5594
VQ-Rec 0.2714 0.4157 0.2715 0.4119 0.2476 0.3944 0.2805 0.5745
One Model for All 0.3130 0.4177 0.3233 0.4070 0.2986 0.3765 0.4421 0.5317
Qwen2-7B-zeroshot 0.0300 0.0394 0.0843 0.1062 0.0170 0.0242 0.0814 0.1057
RecFormer 0.2858 0.3840 0.3001 0.3880 0.2667 0.3885 0.2743 0.5701
LLM-Based PS5 0.1775 0.2482 0.1171 0.1709 0.1860 0.2674 0.2046 0.2947
TALLRec 0.3347 0.3593 0.3746 0.3993 0.3585 0.3826 0.5392 0.5661
AlphaRec 0.2489 0.3456 0.2264 0.3193 0.2418 0.3538 0.2318 0.3661
RecCocktail-WA 0.3722 0.3959 0.3722 0.3961 0.3410 0.3613 0.5738 0.5982
Ours RecCocktail-G 0.3081 0.3316 0.2957 0.3209 0.2750 0.2998 0.5680 0.5918
RecCocktail-S 0.4079 0.4291 0.4076 04314 0.3735 0.3925 0.5460 0.5703
RecCocktail 0.4132% 0.4350* 0.4097* 0.4334* 0.3754* 0.3944* 0.5783* 0.6023*

Table 1: Performance Comparison in Warm Start I.I.D Scenario (Beauty, Toys, Sports, and MovieLens-1M).

Methods Beauty Toys Sports MovieLens-1M
NDCG@1 NDCG@3 | NDCG@1 NDCG@3 | NDCG@1 NDCG@3 || NDCG@1 NDCG@3
BPR-MF 0.0306 0.0688 0.0333 0.0765 0.0350 0.0739 0.0723 0.1421
Traditional GRU4Rec 0.0562 0.1063 0.0447 0.0926 0.0640 0.0996 0.0798 0.1489
SASRec 0.0656 0.1368 0.0670 0.1210 0.0547 0.1203 0.0912 0.1891
FMLP-Rec 0.0587 0.1229 0.0537 0.1117 0.0545 0.1236 0.1145 0.1947
Transferable UniSRec 0.0957 0.1457 0.0814 0.1559 0.0832 0.1408 0.0985 0.1343
VQ-Rec 0.1189 0.1589 0.0957 0.1603 0.0985 0.1463 0.1025 0.1412
One Model for All 0.1085 0.1638 0.1120 0.1515 0.0969 0.1406 0.1264 0.1699
Qwen2-7B-zeroshot 0.0187 0.0260 0.0293 0.0356 0.0213 0.0273 0.0318 0.0407
RecFormer 0.1051 0.1687 0.0913 0.1592 0.0922 0.1489 0.1108 0.1547
LLM-Based PS5 0.0871 0.1466 0.0755 0.1358 0.0758 0.1355 0.0957 0.1319
TALLRec 0.1480 0.1783 0.1624 0.1831 0.1251 0.1524 0.1458 0.1668
AlphaRec 0.0588 0.1235 0.0553 0.1223 0.0565 0.1358 0.0923 0.1981
RecCocktail-WA 0.1766 0.2077 0.1589 0.1810 0.1610 0.1903 0.1636 0.2597
Ours RecCocktail-G 0.1746 0.2072 0.1474 0.1710 0.1581 0.1868 0.1455 0.1890
RecCocktail-S 0.1603 0.1863 0.1504 0.1764 0.1564 0.1867 0.1636 0.2597
RecCocktail 0.1825%* 0.2145* 0.1614* 0.1821* 0.1646* 0.1921* 0.1818* 0.2755%
Table 2: Performance Comparison in Cold-Start Item O.0.D Scenario (Beauty, Toys, Sports, and MovieLens-1M).

fully removed the overlapping portions between the domain-
general dataset and the domain-specific datasets. We con-
sider two recommendation settings: 1) Warm-Start Setting
keeps the five-core dataset and filters users and items with
fewer than five interactions for all datasets. Following (Geng
et al. 2022; Lin et al. 2024a), we adopt the leave-one-out
strategy to split the filtered dataset. More concretely, we
split the last interaction of each user into the test set, the
second-to-last one into the validation set, and the rest into
the training data. 2) New-Item Setting uses the same train-
ing and validation sets as the warm-start setting, but replaces
the items in the test set with those that never appear in the
training or validation sets as ground-truth.

e Baselines. Baselines include traditional recommendation
methods (BPR-MF (Rendle et al. 2009), GRU4Rec (Hi-
dasi et al. 2016), SASRec (Kang and McAuley 2018), and
FMLP-Rec) (Zhou et al. 2022), transferable sequential rec-
ommenders (UniSRec (Hou et al. 2022), VQ-Rec (Hou et al.

2023)) and cross-domain recommender (One Model for
All (), LLM-based recommenders (Qwen2-7B-zeroshot ,
RecFormer (Li et al. 2023), P5 (Geng et al. 2022), TALL-
Rec (Bao et al. 2023), AlphaRec (Sheng et al. 2025)) and
our ablation counterparts RecCocktail-WA (weight average),
RecCocktail-G (domain general LoRA only), RecCocktail-S
(domain-specific LoRA only).

¢ Evaluation Setting. Following LLM-based recommenda-
tion works (Zhang et al. 2024; Kim et al. 2024), we add 29
randomly selected non-interacted items to the candidate set,
so that for each user it contains 1 positive item and 29 neg-
ative items. For quantitative comparison, we employ widely
used ranking-based metrics, NDCG@1 and NDCG@3 for
all experiments. All metrics are “the higher, the better”. For
all tables in the following, bold* numbers refer to the best
performance, while underlined numbers indicate the second-
best performance.

*https://huggingface.co/Qwen/Qwen2-7B-Instruct
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Figure 4: (a) and (b) are the coefficients \; and \; calculated by entropy-guided adaptive merging. (c) and (d) are the impact

of the number of unlabeled test data.

o Implementation Details. To ensure fair comparison, ex-
perimental settings are standardized as follows: Traditional
methods (BPR-MF, GRU4Rec, SASRec, FMLP-Rec) use
learning rate 0.001, Adam optimizer, batch size 256, and
embedding dimension 64. Transferable models (UniSRec,
VQ-Rec, RecFormer) fine-tune pre-trained models from
original authors on our dataset, with UniSRec and VQ-Rec
using BERT for text processing. P5 and TALLRec use iden-
tical instruction fine-tuning templates: PS5 with full fine-
tuning, TALLRec with LoRA (rank 16). For RecCocktail,
we use Qwen2-7B backbone with LoRA (rank 16, alpha
32, dropout 0.05) for both general and specific LoRA on
NVIDIA RTX 4090 GPUs. Learning rate is selected from
{le-4, 2e-4} with batch size 128. For adapter fusion on two
GPUs, batch size is 60, with test samples grid-searched from
{50, 100}. Title token counts are 3 for Toys/Sports and 5
for Beauty. We employ gradient checkpointing and VLLM
inference acceleration. Additional details are in our source
code.

4.2 Overall Performance

We comprehensively compare RecCocktail against tradi-
tional, transferable, and LLM-based recommenders. Tables
1 and 2 present results for warm-start I.I.D and new-item
0.0.D settings, respectively. Results indicate that:

* The proposed RecCocktail consistently achieves the best
performance across all I.I.D and O.0.D scenarios on the
four datasets, with a t-test at p<0.05 level. The strong
performance of RecCocktail demonstrates its ability to ef-
ficiently capture domain-specific knowledge while main-
taining excellent generalization capabilities.

* Traditional recommendation methods and the ID-based
LLM recommendation method P5, AlphaRec perform
poorly in cold-start scenarios. Relying heavily on collab-
orative filtering information reduces the model’s general-
ization capability.

* We observe that RecCocktail consistently outperforms its
ablation counterparts across all scenarios. This highlights
the importance of integrating both general recommenda-
tion knowledge and domain-specific insights, which are
complementary. The results also confirm the effective-
ness of our LoRA cocktail method for knowledge fusion.
Note that the RecCocktail-G has not been exposed to train-

Scenario Sample TallRec 2nd Finetune RecCocktail
10% 0.3957 0.0704 0.5353
Warm 20% 0.4298 0.0790 0.5454
30% 0.4563 0.0540 0.5498
10% 0.1091 0.0000 0.1455
Cold 20% 0.1091 0.0182 0.1636
30% 0.1273 0.0000 0.1636

Table 3: NDCG @1 performance in the few-shot training set-
ting on Movielens-1M Dataset.

ing data from the Beauty, Toys, Sports, or Movielens-1M
domains. It still achieves commendable performance in
such zero-shot settings, demonstrating that it has effec-
tively learned generalizable recommendation knowledge.
We also find that simple average merging (RecCocktail-
WA) sometimes trigger negative transfer, demonstrating
the effectiveness and importance of our proposed Entropy-
Guided Adaptive Merging strategy for selecting appropri-
ate merging coefficients.

4.3 In-Depth Analysis

o Analysis of the Coefficients \; and \,. In Figure 4a and
4b, we investigate the coefficients A\; and A, calculated by
entropy-guided adaptive LoRA cocktail in the warm-start
scenario and the cold-start scenario, respectively. A; and
Ao represent the respective weights assigned to the base
spirit and the ingredient LoRA module during their merg-
ing. We observe that in the warm-start scenario, A, is rela-
tively large, reflecting a greater reliance on domain-specific
LoRA. Conversely, in the cold-start scenario, the weight of
A1 increases significantly, emphasizing the importance of
domain-general knowledge. This result is reasonable and
aligns with the differing requirements of these two scenar-
i0s. This result also demonstrates the effectiveness of our
entropy-guided adaptive LoRA cocktail method.

o Analysis of the Number of Unlabeled Test Data. The
number of unlabeled test data is one of the hyperparam-
eters. Figure 4c and 4d illustrates the impact of differ-
ent numbers on the NDCG@1 performance. The entropy-
guided learning method converges rapidly, experimental re-
sults indicate that setting the number to 50 or 100 achieves a



Methods Beauty Toys Sports
NDCG@1 NDCG@3 | NDCG@1 NDCG@3 | NDCG@1 NDCG@3
RecCocktail-G 0.1786 0.2083 0.1554 0.1721 0.1538 0.1814
RecCocktail-S 0.1663 0.1911 0.1534 0.1723 0.1509 0.1309
RecCocktail 0.1801* 0.2086* 0.1683* 0.1882* 0.1587* 0.1864*

Table 4: Ablation Study on Llama-3.1-8b Across Datasets in Cold-Start Item O.0.D Scenario (Beauty, Toys, and Sports).

model fusion weight with optimal performance, this config-
uration proves effective across the majority of experiments
conducted on the Beauty, Toys, Sports and MovieLens-1M
datasets. Therefore, a limited amount of unlabeled test data
is sufficient to learn suitable model fusion weights, thereby
significantly reducing the data requirements and computa-
tion resource costs.

e Performance in Few-Shot Training Setting. We fur-
ther conduct experiments in scenarios with limited domain-
specific training data. Specifically, we adopt a few-shot
training setup on MovieLens-1M, where only a small per-
centage of samples are randomly selected from the training
set for model training. We compare RecCocktail with Tall-
Rec and the results of second-round fine-tuning on the gen-
eralizable base model. The experimental results are shown in
Table 3. We find that the optimization approach of second-
round fine-tuning led to catastrophic forgetting. It fails to
generate output in the specified instruction format. The ex-
perimental results demonstrate that RecCocktail maintains
strong performance even in few-shot scenarios.

e Experiments on More LLLM Backbones. To evaluate the
robustness of the RecCocktail framework to different LLM
backbones, we also utilize Llama-3.1-8B* as LLM backbone
and observe the results. As shown in Table 4, when switch-
ing the LLM backbone to LLaMA-3.1-8B, RecCocktail im-
proves over both RecCocktail-G and RecCocktail-S on all
datasets, indicating the effectiveness of adaptive merging.

e Case Study. We further conduct a case study to delve
deeper into the recommendation results of RecCocktail. We
randomly selected a user from the Movielens-1M test set,
provided their historical viewing records and a candidate
set, and asked both our model and ChatGPT to make movie
recommendations along with explanations for their choices.
The outputs are shown in Figure 5. We find that RecCock-
tail successfully generalizes to the explainable recommen-
dation task. It accurately captured the user’s preference for
action movies from their historical viewing records and
leveraged world knowledge to provide an accurate inter-
pretation of the plot of Die Hard. In contrast, GPT-4 lacks
domain-specific knowledge in the recommendation, incor-
rectly associating the action movie Die Hard with science
fiction films like Star Wars, Alien, and Terminator, resulting
in unreasonable explanation outcomes. This case study fur-
ther highlights RecCocktail’s task generalization capability
and its deep understanding of recommendation knowledge.

*https://huggingface.co/meta-llama/Llama-3.1-8B

/ Instruction Input:

| am a movies fan. | watched [Star Wars: Episode VI - Return of the Jedi
(1983)||E.T. the Extra-Terrestrial (1982) || Predator (1987) || Jurassic Park
(1993) ||, The Hustler (1961) || Star Wars: Episode IV - A New Hope (1977)
|| Raiders of the Lost Ark (1981) || Star Wars: Episode V - The Empire
Strikes Back (1980)|Jaws (1975)||King Kong (1933) || Goldfinger (1964) ||
Good, The Bad and The Ugly, The (1966) || Saving Private Ryan (1998) ||
Run Lola Run (Lola rennt) (1998) || Terminator, The (1984) || Alien (1979) ||
Thelma & Louise (1991)||Mad Max (1979)||Fistful of Dollars, A (1964) ||
Rocky (1976) ]. Please recommend me only one most likely movies from
[Hollywood Knights, The (1980) || Rocky IV (1985) || South Park: Bigger,
Longer and Uncut (1999) || Kicking and Screaming (1995) || Pushing Hands
(1992) || Enchanted April (1991) || We're No Angels (1989) || Winslow Boy,
The (1998) || Spanking the Monkey (1994) || Soul Man (1986) || Girl,
Interrupted (1999) || Headless Body in Topless Bar (1995) || Dying Young
(1991) || Mafia! (1998) || Champagne (1928) || Young Guns (1988) ||
Grumpy Old Men (1993) || Boys of St. Vincent, The (1993) || Shaft (1971) ||
Die Hard (1988)] and give me the reasons.

RecCocktail’s Output:

| recommend you to watch Die Hard (1988) because it is a classic action
movie that has been highly acclaimed for its thrilling plot, intense action
sequences, and memorable characters. The film features a gripping
storyline where a police officer has to save a skyscraper from a group of
terrorists, showcasing his skills and bravery. It has set a benchmark for
action movies and has influenced many films in the genre.

GPT-4's Output:

| recommend you to watch Die Hard (1988) because it features a thrilling
blend of action and suspense that aligns well with your taste for iconic
films like Star Wars, Alien, and Terminator. The movie's clever storyline,
memorable characters, and intense plot twists provide a captivating
experience similar to those of the classic adventures you already enjoy.
Plus, Die Hard is often regarded as a quintessential action film, making it

Q’\ust-watch for any movie fan. J

Figure 5: Case study of RecCocktail and GPT-4.

5 Conclusion

We proposed a generalizable and efficient LLM-based rec-
ommendation framework RecCocktail. As the recommen-
dation data for a specific domain is limited, RecCock-
tail is designed to combine domain-general and domain-
specific recommendation knowledge. Specifically, RecCock-
tail first constructs domain-general LoRA as base spirit and
domain-specific LoRA as ingredient. Then the combina-
tion is achieved by merging two fine-tuning model param-
eters. RecCocktail is generalizable as it injects recommen-
dation general knowledge to any domain-specific recom-
mendation tasks. Besides, RecCocktail is efficient not only
because it chooses parameter-efficient fine-tuning, but also
the plug-and-play nature of any domain-specific recommen-
dation task and domain-general task. Extensive experimen-
tal results on four recommendation datasets under both the
warm scenario and cold-start scenario show the effective-
ness of our proposed framework.
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