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Abstract
User-oriented recommender systems (RS) charac-
terize users’ preferences based on observed be-
haviors and are widely deployed in personalized
services. However, RS may unintentionally cap-
ture biases related to sensitive attributes (e.g., gen-
der) from behavioral data, leading to unfair is-
sues and discrimination against particular groups
(e.g., females). Adversarial training is a popu-
lar technique for fairness-aware RS, when filter-
ing sensitive information in user modeling. De-
spite advancements in fairness, achieving a good
accuracy-fairness trade-off remains a challenge in
adversarial training. In this paper, we investigate
fair representation learning from a novel informa-
tion theory perspective. Specifically, we propose
a model-agnostic Fair recommendation method via
the Information Bottleneck principle (FairIB). The
learning objective of FairIB is to maximize the mu-
tual information between user representations and
observed interactions, while simultaneously mini-
mizing it between user representations and sensi-
tive attributes. This approach facilitates the cap-
turing of essential collaborative signals in user rep-
resentations while mitigating the inclusion of un-
necessary sensitive information. Empirical stud-
ies on two real-world datasets demonstrate the ef-
fectiveness of the proposed FairIB, which signif-
icantly improves fairness while maintaining com-
petitive recommendation accuracy, either in single
or multiple sensitive scenarios. The code is avail-
able at https://github.com/jsxie9/IJCAI FairIB.

1 Introduction
In the modern era, recommender systems have become essen-
tial allies, seamlessly delivering personalized content across
diverse domains [Covington et al., 2016; Chen et al., 2020].
Fueled by sophisticated algorithms and user-centric mod-
els [Tan et al., 2021; Yang et al., 2023; Wu et al., 2023], these
systems shine in anticipating user preferences, elevating over-
all user experience and engagement. While recommender
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systems achieve remarkable success in tailoring recommen-
dations to individual users, they frequently grapple with fair-
ness challenges stemming from biased historical interactions,
particularly concerning sensitive attributes such as gender and
race [Ekstrand et al., 2018b; Shao et al., 2022]. For example,
news recommender systems may disproportionately recom-
mend certain political ideologies over others, which may ma-
nipulate user’s opinions [Li et al., 2023]. Job recommender
systems may display racial or gender discrimination by dis-
proportionately suggesting low-paying jobs to protected user
groups [Dong et al., 2023].

Due to the progressive advancement of trustworthy AI,
fairness-aware recommendations are capturing the increas-
ing attention of researchers [Li et al., 2023]. Learning fair
recommendation representations from user-item interactions
is one of the promising methods [Bose and Hamilton, 2019;
Xie et al., 2017]. To achieve the goal of fair representations
without sensitive information, researchers have proposed var-
ious methods [Yao and Huang, 2017; Zhu et al., 2018;
Wu et al., 2021a; Wu et al., 2021b]. Among them, adversar-
ial training is the mainstream technique for recommendation
fairness, and a series of adversarial-based works have been
proposed [Bose and Hamilton, 2019; Dai and Wang, 2021;
Wu et al., 2021a]. While learning user representations from
observed interactions, adversarial-based methods encourage
that sensitive attributes cannot be inferred from the repre-
sentations. These methods operate within a two-player min-
imax game framework, effectively safeguarding against the
disclosure of such attributes within the learned representa-
tions. Despite advancements in fairness, achieving an effi-
cient accuracy-fairness trade-off remains a challenge in ad-
versarial training. Due to the instability of adversarial train-
ing [Salimans et al., 2016; Arjovsky et al., 2017], a com-
monly employed solution is to pre-train recommendation rep-
resentations based on observed interactions and subsequently
optimize sensitive attribute filters through adversarial train-
ing [Wu et al., 2021a]. However, this solution is hard to bal-
ance accuracy-fairness trade-off, leading to unsatisfied rec-
ommendations.

In this paper, we revisit the fairness-aware recommenda-
tion from an information theory perspective, and propose a
novel FairIB via the information bottleneck principle. As
shown in Figure 1, we illustrate the optimization objectives
of the traditional recommendation and our propose FairIB.
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Figure 1: Information diagram of user representations X, user sensitive attributes S, and user-item interactions R. (a) Traditional recommen-
dation methods focus on maximizing the mutual information between representations X and user-item interactions R. As users’ behavior
exposes their sensitive attributes, maximizing I(R;X) will lead to representations involving sensitive information. (b) Our proposed FairIB
via Information Bottleneck principle. It not only maximizes I(R;X), meanwhile minimizing the mutual information between representa-
tions X and sensitive attributes S. Therefore, FairIB acquires fair representations X through IB learning, successfully achieving an efficient
trade-off of recommendation accuracy and fairness.

Traditional recommender systems focus on the accuracy task,
the optimal user representations X are obtained by maxi-
mizing the mutual information between X and user-item ob-
served interactions R (I(R;X)). However, empirical stud-
ies indicate that users’ behaviors can expose their sensitive
attributes [Kosinski et al., 2013; Wu et al., 2021a], simply
maximizing I(R;X) will introduce sensitive information to
representations, leading to unfair recommendation results. To
tackle this issue, our proposed FairIB acquires fair represen-
tations X based on information bottleneck learning. Besides
maximizing the mutual information I(R;X), FairIB simul-
taneously minimizes the mutual information I(X;S). Thus,
FairIB acquires fair yet precise representations in an IB man-
ner, successfully achieving an efficient trade-off of recom-
mendation accuracy and fairness.

However, directly optimizing the learning objective of
Max : I(R;X) − βI(X;S) poses three challenges. First,
the calculation of I(R;X) is difficult. Each user representa-
tion should match all interacted items, as they interact with
different items. Second, it’s hard to minimize I(X;S) be-
cause estimating the upper bound of mutual information is an
intractable problem. While current methods use variational
techniques for estimation, their heavy reliance on prior as-
sumptions (e.g., Gaussian marginal distribution) can result in
the upper bound failing to accurately estimate mutual infor-
mation with low bias in practical applications [Alemi et al.,
2017; Cheng et al., 2020]. Third, users’ sensitive attributes
are not only exposed in their representations, but also in sub-
graph structure [Wu et al., 2021a], so it’s necessary to filter
sensitive information in user-centric sub-graphs.

To address the above challenges, we elaborately implement
FairIB as follows. For maximization of I(R;X), we establish
that the goal is equivalent to maximizing the inner product
between a user and her interacted items representations. This
aligns with the typical optimization objective of general rec-
ommendation systems. For minimization of I(X;S), we uti-
lize the Hilbert-Schmidt Independence Criterion (HSIC) reg-
ularizer [Ma et al., 2020; Wang et al., 2023] to approximate
the optimization, without prior assumptions. Besides, we ex-

tend the HSIC regularizer to user-centric sub-graphs, further
eliminating the sensitive information. In summary, our main
contributions are listed as follows:

• In this paper, we revisit fairness-aware recommen-
dations from an information theory lens, and pro-
pose a novel model-agnostic fair representation learning
method FairIB.

• Technically, FairIB introduces the HSIC-based bottle-
neck to improve recommendation fairness, effectively
eliminating the sensitive information from user and sub-
graph perspectives.

• Extensive experiments demonstrate the effectiveness of
our proposed FairIB, which can effectively achieve rec-
ommendation accuracy-fairness trade-off.

2 Related Work
2.1 Fairness in Recommendation
Recommendation is a widely deployed user-centric applica-
tion [Gao et al., 2023], and an increasing number of re-
searchers are focusing on the issue of fairness [Xiao et al.,
2017; Li et al., 2021; Shao et al., 2024]. In recommenda-
tion systems, there is the potential for unequal treatment of
sensitive user groups [Ekstrand et al., 2018a]. For instance,
an unfair job recommendation system may exhibit prefer-
ences towards user groups with specific sensitive attributes,
inevitably resulting in biased recommendations [Dong et al.,
2023]. Many fairness definitions are proposed to measure po-
tential unfairness [Mehrabi et al., 2021; Biega et al., 2018;
Wu et al., 2021b]. For example, individual fairness requires
that a model produces similar decisions for similar individ-
uals [Biega et al., 2018]. Group fairness advocates against
discrimination of a specific user group based on sensitive
attributes [Wu et al., 2021b]. In this work, our emphasis
is on group fairness because it can quantitatively measure
the differences in how sensitive groups are treated. [Hardt
et al., 2016]. In response to fairness concerns, researchers
have designed numerous models [Yao and Huang, 2017;
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Wu et al., 2021a; Dai and Wang, 2021; Wu et al., 2021b].
[Yao and Huang, 2017] proposes five fairness metrics as reg-
ularization terms to measure the discrepancy between the
prediction behavior for the female and male groups. Based
on adversarial learning, FairRec [Wu et al., 2021a] decom-
poses adversarial learning and orthogonality regularization.
FairGo [Wu et al., 2021b] further develops a more sophisti-
cated graph-based adversarial learning for fairness modeling.
FairGNN [Dai and Wang, 2021] proposes a sensitive attribute
estimator and incorporates adversarial debiasing and covari-
ance constraints to regularize the GNN for fair node represen-
tations and predictions. Recently, FairMI [Zhao et al., 2023]
attempts to mitigate the impact of sensitive attributes on the
final recommendation representation by applying two aspects
of mutual information. Different from these approaches, our
approach utilizes the information bottleneck principle for fair
representation learning, effectively achieving the best trade-
off between recommendation accuracy and fairness.

2.2 Information Bottleneck Principle

The Information Bottleneck (IB) principle seeks to encapsu-
late the balance in the to-be-learned representation between
the essential information required for decision and the infor-
mation retained from the input [Tishby et al., 2000]. IB has
been employed to enhance the interpretability and disentan-
gle representation in deep learning-based tasks [Bao, 2021;
Jeon et al., 2021]. However, precise calculation of the mu-
tual information between two high-dimensional random vari-
ables poses a significant challenge. To address this chal-
lenge, researchers use neural networks to approximate and
estimate mutual information [Alemi et al., 2017]. For in-
stance, InfoNCE [Oord et al., 2018] and variational based
method [Alemi et al., 2017] have been introduced to estimate
the lower bound of mutual information. Recently, CLUB
is proposed to estimate the upper bound of mutual informa-
tion based on the log-ratio contrastive learning [Cheng et al.,
2020], which heavily relies on prior assumptions. In addi-
tion to directly optimizing mutual information objectives, re-
searchers employ the Hilbert-Schmidt Independence Crite-
rion (HSIC) as an alternative to mutual information estima-
tion, which can assess the independence of two variables [Ma
et al., 2020]. Given the challenge of estimating the upper
bound of mutual information, we opt for HSIC as an ap-
proximation to minimize the mutual information between the
learned representations and sensitive attributes.

3 Preliminary

3.1 Problem Statement

In a recommender system, there are two entity sets: a user
set U(|U | = M) and an item set V (|V | = N). The interac-
tions between users and items are represented by the matrix
R ∈ RM×N . Specifically, in scenarios involving common
implicit feedback, the notation rai = 1 signifies that user a
has interacted with item i, otherwise rai = 0. The interac-
tions form a user-item bipartite graph, which can be formu-
lated as G =< U ∪ V,A >. The adjacency matrix A can be

formulated as:

A =

[
0M×M R
RT 0N×N

]
. (1)

X ∈ RM×D and Y ∈ RN×D denote the learned user
and item representations, where D refers to the dimension of
representation. The goal of recommendation is to predict the
potential preference r̂ai of user a to item i, and can be calcu-
lated with r̂ai = xT

a yi, where xa is user a’s representation,
yi is item i’s representation. Given a binary sensitive attribute
k ∈ {0, 1}, sa refers to user a’s attribute value. Then, we can
partition the user set U into two subsets:U0 and U1, where U0

represents the set of users with a sensitive attribute value of
0, and U1 represents the set of users with a sensitive attribute
value of 1. Our goal is to learn fair user representations X
while maintaining competitive recommendation accuracy.

3.2 Hilbert-Schmidt Independence Criterion
(HSIC)

HSIC is a statistical method employed to quantify the inde-
pendence between two variables. Followed by [Ma et al.,
2020], HSIC(A,B) can be formulated as:

HSIC(A,B) = ||CAB ||2hs, (2)

where CAB is the cross-covariance operator between the Re-
producing Kernel Hilbert Spaces (RKHSs) of A and B, ||·||2hs
refers to Hilbert-Schmidt norm. Given the sampled instances
(ai, bi)

n
i=1 from the batch training data, we estimate HISC as:

ˆHSIC(A,B) =
Tr(KAHKBH)

(n− 1)2
, (3)

where KA and KB are kernel Gram matrices [Ham et al.,
2004] of A and B, H = I − 1

n11
T is a centering matrix, and

Tr(·) refers to the trace of the matrix. In our work, we use
the commonly employed radial basis function (RBF) [Vert et
al., 2004] as the kernel function KA and KB , as follows:

K(ai, aj) = exp(−||ai − aj ||2

2σ2
), (4)

where σ is a hyperparameter that controls the sharpness of
RBF.

4 The Proposed FairIB
4.1 Overall Objective of FairIB
Here, we first present the overall optimization objective of
our proposed FairIB. The goal of FairIB is to learn the opti-
mal user representations X by Max : I(R;X) − βI(X;S).
Considering that each user interacts with different items, the
optimal user representations X should match all interacted
items. We relax the maximization I(R;X) to maximization
I(R;X,Y). Besides, users’ sensitive attributes are not only
exposed in their representations, but also in user-centric sub-
graphs [Wu et al., 2021b]. Aiming to eliminate user-sensitive
attributes further, we additionally minimize the mutual infor-
mation of sensitive attributes S and user-centric sub-graph
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representations G of all users. Therefore, the overall objec-
tive of FairIB is formulated as follows:

Max : I(R;X,Y)− β I(X;S)︸ ︷︷ ︸
user side

−γ I(G;S)︸ ︷︷ ︸
sub-graph side

, (5)

where β and γ are two parameters that control the bottle-
neck scales, G denotes user-centric sub-graph representa-
tions. Eq.(5) describes that the optimal user representations
are acquired in the trade-off of both recommendation accu-
racy and fairness demand.

4.2 Maximization of I(R;X,Y)

We first present how to maximize the mutual informa-
tion I(R;X,Y), ensuring that the representations of users
and items contain sufficient information for recommendation
tasks. Based on the properties of mutual information and en-
tropy [Kraskov et al., 2004], we have the following deriva-
tion:

I(R;X,Y) = H(R)−H(R|X,Y). (6)
As H(R) is a constant, we only need to maximize the second
term, as follows:

−H(R|X,Y) = −
∑

a∈U,i∈V

p(xa,yi)H(R|X = xa,Y = yi)

=
∑

a∈U,i∈V

p(xa,yi)
1∑

rai=0

p(rai|xa,yi)log(p(rai|xa,yi))

=
∑

a∈U,i∈V

1∑
rai=0

p(rai,xa,yi)log(p(rai|xa,yi))

= E[log(p(R|X,Y))].
(7)

Therefore, maximizing I(R;X,Y) is equivalent to maximiz-
ing the log likelihood p(R|X,Y), which is the typical op-
timization objective for general recommender systems. In
other words, we can employ any recommendation model to
realize the goal of maximization I(R;X,Y).

4.3 Minimization of I(X, S) and I(G, S)
Sensitive Attribute Encoder. Following the previous
works [Wu et al., 2021b; Zhao et al., 2023], we train a sen-
sitive encoder to represent sensitive attributes S. Considering
that users’ behaviors reflect their attributes [Kosinski et al.,
2013; Wu et al., 2021a], we build a graph-based encoder for
extraction from the interaction data, followed by a sensitive
attribute classifier. After training the encoder, we obtain sen-
sitive representations for all users, i.e., {ha|a ∈ U}. To fur-
ther get the sensitive representations for each user group (i.e.,
U0 and U1), we calculate the mean value within each group.
This process is calculated as follows:

ek =
1

|Uk|
∑
a∈Uk

ha, (8)

where k ∈ {0, 1} refers to different sensitive attribute values,
Uk denotes different user groups, and ha denotes the sensitive
representation for user a learned from the encoder. Finally,
we obtain the sensitive representations E = [e0, e1].

HSIC-based MI Minimization. Given the encoded sensi-
tive representations E, we instead I(X;S) of I(X;E). In
the same manner, we instead I(G;S) of I(G;E). How-
ever, it’s hard to minimize the mutual information because
estimating the upper bound of MI is still an intractable prob-
lem. Although previous studies use variational based meth-
ods to estimate the upper bound of MI, they heavily rely
on the prior distribution and the quality of sampling influ-
ences the accuracy of the estimation [Alemi et al., 2017;
Cheng et al., 2020]. Here we introduce HSIC to replace mu-
tual information for optimization. Therefore, the optimiza-
tion objective for user side minimization is:

ˆHSIC(X,E) =
∑
a∈Ub

ˆHSIC(xa, esa), (9)

where Ub denote users in the batch training data, xa and esa
denote user a’s representation and corresponding sensitive at-
tribute representation. For sub-graph side minimization, we
first compute user-centric sub-graph representations G as fol-
lows:

G = g(X1, ...,XL),[
X l+1

Y l+1

]
= D

− 1
2

A AD
− 1

2

A

[
X l

Y l

]
,

(10)

where Xl and Yl denote user and item representations in lth

layer, Xl+1 and Yl+1 denote user and item representations
in l + 1th layer. DA is the degree of the adjacent matrix A
and L is the depth of sub-graph, g(·) is the readout function.
Similar to the user side, we implement the minimization of
the sub-graph side as follows:

ˆHSIC(G,E) =
∑
a∈Ub

ˆHSIC(ga, esa), (11)

where Ub denote users in the training batch data, ga is user a’s
sub-graph representation. Thus, we obtain the minimization
objective for a specific sensitive attribute (such as gender):

LHSIC = β ˆHSIC(X;E) + γ ˆHSIC(G;E). (12)

Here we only present the loss function for a single sensi-
tive attribute. In fact, FairIB is flexible to extend multiple
sensitive attributes, which only performs multiple bottleneck
learning for each sensitive attribute. Then, we can get multi-
sensitive loss based on HSIC, as follows:

LHSIC =
∑
t∈T

Lt
HSIC , (13)

where T denotes the set of multi-sensitive attributes, Lt
HSIC

denotes the loss function of tth sensitive attribute.

4.4 Model Optimization
As we mentioned in section 4.2, we employ common
pair-wise ranking loss to optimize the maximization of
I(R;X,Y):

Lrec = −
∑
a∈U

∑
(i,j)∈Da

logσ(xT
a yi − xT

a yj)+α||Θ||2, (14)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2472



Datasets Users Items Interactions Attributes
Movielens-1M 6,040 3,952 1,000,209 gender, age

LastFM 48,386 21,711 2,045,305 gender

Table 1: The statistics of two datasets.

where σ(·) is the sigmoid function, Θ = [X,Y] is user and
item free embedding matrices and α controls the L2 regular-
ization coefficient. Da = {(i, j)|i ∈ Ra ∩ j ∈ V − Ra},
Ra denotes user a interacted items. By combining the inde-
pendence constraints of HSIC-based bottleneck on the user
side and the sub-graph side, we obtain the final optimization
objective of FairIB:

Lall = Lrec + LHSIC . (15)

5 Experiments
In this section, we first introduce our experimental settings.
Then, we conduct extensive comparisons with SOTA meth-
ods to verify the effectiveness of our proposed FairIB. Finally,
we give a detailed analysis of our method, including ablation
studies and parameter sensitivities.

5.1 Experimental Settings
Datasets. To evaluate the effectiveness of our proposed
method, we select two real-world recommendation datasets:
Movielens-1M [Harper and Konstan, 2015; Wu et al., 2020]
and LastFM [Celma Herrada and others, 2009]. Following
the previous works [Wu et al., 2021a; Zhao et al., 2023], we
split all interactions into training, validation, and test data.
For Movielens-1M, we treat gender as the single attribute, and
select gender and age as the compositional setting for further
experimental study. For LastFM, we only use gender as the
sensitive attribute. Detailed statistics of the two datasets are
summarized in Table 1.

Evaluation Metrics. As we concentrate on the trade-off
between recommendation accuracy and fairness, it is essen-
tial to evaluate and report results for both aspects. For mea-
suring the recommendation accuracy, we employ two widely
used ranking metrics: NDCG [Järvelin and Kekäläinen,
2017] and Recall [Gunawardana and Shani, 2009]. Larger
values of NDCG and Recall indicate superior recommenda-
tion accuracy performance. For fairness evaluation, we also
employ two popular group fairness metrics: Demographic
Parity (DP) [Caton and Haas, 2020] and Equal Opportunity
(EO) [Hardt et al., 2016]. Specifically, we calculate DP as
follows:

f i
U0

=

∑
a∈U0

Ii∈Qa

|U0|
, f i

U1
=

∑
a∈U1

Ii∈Qa

|U1|
,

fU0
= [f1

U0
, ..., f i

U0
, ..., fN

U0
],fU1

= [f1
U1
, ..., f i

U1
, ..., fN

U1
],

(16)

where Qa = TopKa, and TopKa is Top-K ranked items for
user a; i ∈ V , U0 and U1 denote user group with different
sensitive attributes; I is an indicator function, if item i is in
the set Qa, then I = 1, otherwise I = 0. Then we compute
Jensen–Shannon divergence to compare two groups:

DP = JS(fU0
,fU1

)|Qa=TopKa
. (17)

The definition of DP requires that item i be recommended
to the two groups with equal probability, regardless of the
actual preferences of the population [Caton and Haas, 2020].
EO is proposed by considering user actual preferences, which
is calculated as:

EO = JS(fU0
,fU1

)|Qa=TopKa∩Ra
, (18)

where Ra denotes the items genuinely liked by user a in the
test data. The smaller values of DP and EO, the better rec-
ommendation fairness.

Baselines. As our proposed FairIB is a model-agnostic
method, we implement FairIB on two representative recom-
mendation backbones: BPR-MF [Rendle et al., 2012] and
LightGCN [He et al., 2020]. These two have emerged as rep-
resentative recommendation backbones in recent years. We
use the full-ranking strategy to evaluate all methods for a fair
comparison. We compare FairIB with SOTA fairness-aware
recommendation methods:

• Reg [Yao and Huang, 2017]: is a regularization-based
model that incorporates various statistical fairness regu-
larization terms.

• Adv [Bose and Hamilton, 2019]: is an adversarial learn-
ing method designed to minimize the correlation be-
tween sensitive attributes and the learned representation.

• FairRec [Wu et al., 2021a]: is a fairness-aware ap-
proach with decomposed adversarial learning and or-
thogonality regularization.

• FairGo [Wu et al., 2021b]: develops a more sophisti-
cated adversarial learning approach that takes into ac-
count the hidden unfairness within a user-centric graph.

• FairGNN [Dai and Wang, 2021]: incorporates adver-
sarial debiasing and covariance constraints to regularize
the GNN for fair node representations and predictions.
It also includes a sensitive attribute estimator to address
the challenge of missing sensitive attribute information.

• FairMI [Zhao et al., 2023]: proposes a two-fold mutual
information optimization framework, which employs a
self-supervised learning approach to maximize the mu-
tual information between pre-trained SOTA model rep-
resentation and to-be-learned representation. Please
note that, we removed the self-supervised learning part
for a fair comparison (which is only designed for en-
hancing accuracy), denoted as FairMI*.

Implementation Details. We conduct experiments on an
NVIDIA A40 GPU with Pytorch-2.1.2. For the sensitive at-
tribute encoder, we utilize LightGCN as the backbone and
a one-layer fully connected network as the attribute classi-
fier. For model training, we set the latent embedding size as
D = 64, the batch size is set to 2048 for Movielens-1M and
4096 for LastFM. The regularization parameter α is set to
0.001. We adopt the Adam optimizer with a learning rate of
0.001. We repeat experiments 10 times and report the average
results.

5.2 Overall Performance
Table 2 and 3 report the overall experimental results on
Movielens-1M and LastFM. From these Tables, we have the
following observations:
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Methods NDCG@K↑ Recall@K↑ DP@K↓ EO@K↓Models 10 30 10 30 10 30 10 30
Base 0.1943 0.2926 0.1437 0.2916 0.2854 0.2412 0.3580 0.3122
Reg 0.1899 0.2859 0.1402 0.2845 0.1954 0.1575 0.2904 0.2576
Adv 0.1900 0.2866 0.1404 0.2858 0.1684 0.1214 0.2736 0.2363

BPR-MF FairRec 0.1896 0.2860 0.1407 0.2847 0.1656 0.1191 0.2714 0.2334
FairMI* 0.1901 0.2867 0.1410 0.2855 0.1521 0.1145 0.2608 0.2199
FairIB 0.1922 0.2903 0.1428 0.2907 0.1453 0.1140 0.2117 0.1740
Base 0.2018 0.3060 0.1511 0.3085 0.2919 0.2449 0.3609 0.3085
Reg 0.1961 0.2938 0.1422 0.2828 0.2097 0.1545 0.3047 0.2611
Adv 0.1963 0.2975 0.1469 0.2998 0.1532 0.1068 0.2694 0.2203
FairRec 0.1950 0.2955 0.1472 0.2986 0.1536 0.1042 0.2590 0.2243

LightGCN FairGo 0.1822 0.2741 0.1336 0.2710 0.2728 0.2275 0.3382 0.2921
FairGNN 0.1964 0.2963 0.1466 0.2969 0.1472 0.1045 0.2608 0.2221
FairMI* 0.1978 0.2967 0.1480 0.2980 0.1436 0.1046 0.2560 0.2148
FairIB 0.2003 0.3013 0.1502 0.3061 0.1408 0.1033 0.2045 0.1686

Table 2: Recommendation accuracy and fairness performances on the Movielens-1M dataset. We report comparisons across different Top-K
values. We compare all fairness-aware methods, the best results are highlighted in bold and the second best results are displayed in underline.

Methods NDCG@K↑ Recall@K↑ DP@K↓ EO@K↓Models 10 30 10 30 10 30 10 30
Base 0.1959 0.2743 0.1564 0.2943 0.2664 0.2376 0.3345 0.3122
Reg 0.1830 0.2477 0.1445 0.2819 0.2072 0.1728 0.2953 0.2710
Adv 0.1813 0.2518 0.1443 0.2791 0.1335 0.1101 0.2618 0.2501

BPR-MF FairRec 0.1876 0.2644 0.1502 0.2853 0.1484 0.1169 0.2712 0.2592
FairMI* 0.1884 0.2595 0.1505 0.2827 0.1273 0.0958 0.2580 0.2476
FairIB 0.1897 0.2665 0.1517 0.2861 0.1243 0.0930 0.2474 0.2403
Base 0.1971 0.2762 0.1572 0.2964 0.2860 0.2569 0.3508 0.3247
Reg 0.1863 0.2619 0.1484 0.2865 0.2201 0.1965 0.3012 0.2867
Adv 0.1887 0.2652 0.1499 0.2853 0.1382 0.1163 0.2682 0.2576
FairRec 0.1892 0.2627 0.1505 0.2837 0.1397 0.1157 0.2700 0.2596

LightGCN FairGo 0.1693 0.2389 0.1371 0.2627 0.2626 0.2338 0.3282 0.3059
FairGNN 0.1879 0.2651 0.1501 0.2859 0.1372 0.1171 0.2690 0.2592
FairMI* 0.1888 0.2662 0.1506 0.2866 0.1381 0.1058 0.2653 0.2548
FairIB 0.1900 0.2678 0.1520 0.2876 0.1313 0.0998 0.2325 0.2314

Table 3: Recommendation accuracy and fairness performances on the LastFM dataset. We report comparisons across different Top-K values.
We compare all fairness-aware methods, the best results are highlighted in bold and the second best results are displayed in underline.

• Compared with base models (BPR-MF, LightGCN), all
fairness-aware methods present better recommendation
fairness but a slight accuracy drop. This is caused by the
natural data distribution, accuracy-fairness is a trade-off
process. Furthermore, we find that graph-based back-
bone (LightGCN) has higher recommendation accuracy
but worse recommendation fairness. The reason is that
graph convolutions strengthen the collaborative signals,
also amplify the sensitive attributes.

• Compared with fairness regularization, adversarial-
based methods achieve better fairness performances,
which demonstrates that learning fair representations is
a more effective technique rather than a simple statistic-
based constraint.

• Our proposed FairIB consistently outperforms all base-
lines on fairness evaluation. Specifically, FairIB im-
proves LightGCN w.r.t DP@30 by 57.82%, 61.15%
on Movielens-1M and LastFM, respectively. Besides,

compared with the strongest fairness baseline, i.e.,
FairMI, FairIB also presents better fairness perfor-
mances, demonstrating the effectiveness of our designed
HSIC-based bottleneck learning.

• Besides fairness metrics, we observe that FairIB also ob-
tains the best recommendation accuracy results except
for the base model. Experiments show the superiority
of FairIB in producing the fairest recommendation re-
sults with the fewest accuracy sacrifice. All indicate that
FairIB acquires the efficient accuracy-fairness trade-off
in the IB manner.

Multi-sensitive Setting. Here, we present comparisons of
all methods under multiple sensitive scenarios. As illustrated
in Table 4, we conduct experiments on Movielens-1M, and
analyze model performances on both gender and age fairness.
For the age attribute, we divide users into two groups based on
binarization. From the Table 4, we have the following obser-
vations. First, FairIB achieves the best accuracy and multiple
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Models NDCG↑ Recall↑ DP↓ EO↓
Gender Age Gender Age

Base 0.2018 0.1511 0.2919 0.1548 0.3609 0.2237
Reg 0.1953 0.1425 0.2120 0.1483 0.3120 0.2210
Adv 0.1940 0.1448 0.1477 0.1231 0.2588 0.2013
FairRec 0.1920 0.1432 0.1511 0.1327 0.2535 0.1996
FairGo 0.1817 0.1304 0.2730 0.1410 0.3256 0.2178
FairGNN 0.1943 0.1454 0.1503 0.1313 0.2440 0.1905
FairMI* 0.1969 0.1469 0.1428 0.1523 0.2585 0.2180
FairIB 0.2002 0.1487 0.1397 0.1137 0.2046 0.1763

Table 4: Comparisons on multiple sensitive attributes (Top-K=10).

(a) BPR-Based (b) LightGCN-Based

Figure 2: Ablation study with Top-K=10 on Movielens-1M.

sensitive attributes fairness performance among all fairness-
aware baselines. This demonstrates that our proposed FairIB
also acquires an efficient accuracy-fairness trade-off under
multi-sensitive attributes. Besides, under the multi-sensitive
scenario, FairIB is more convenient compared with adversar-
ial methods as we don’t need multiple discriminator learning.
Overall, either single-sensitive or multi-sensitive attributes,
FairIB is effective and efficient in achieving recommendation
accuracy-fairness trade-off.

5.3 Model Analysis
Ablation Studies. In this part, we conduct ablation studies
on Movielens-1M to verify the effectiveness of each compo-
nent in FairIB. As illustrated in Figure 2, we conduct experi-
ments on BPR-MF and LightGCN backbones. Among them,
“w/o U” and “w/o G” denote the variants of FairIB without
user and sub-graph sides bottleneck learning (Eq.(5)), respec-
tively. From Figure 2, we have the following observations.
First, “w/o U” shows better performance both in accuracy
and fairness compared to “w/o G”. This indicates that bottle-
neck learning on the user side is effective in eliminating more
unnecessary sensitive information while capturing essential
collaborative signals more effectively. Second, by equipping
bottleneck learning on both the user side and sub-graph side,
our method can further improve recommendation accuracy
and fairness.

Parameter Sensitivity Analyses. We investigate the im-
pact of user and sub-graph bottleneck learning scales β and γ
in Eq. (12) on Movielens-1M. Since the optimal parameters
for FairIB on the Movielens-1M dataset are β=40 and γ=10,
we fix β=40 and analyze the sensitivity of γ. Similarly, we
fix γ=10 and analyze the sensitivity of β. We have several
observations from Figure 3. First, with the increase of β, this
implies the enhancement of on user-side bottleneck learning,
user representations will contain less sensitive information,
which achieves a better fairness performance accompanied by
a decrease in accuracy. However, a larger β will impact the
model’s training, resulting in a deterioration of both accuracy

Figure 3: FairIB based on LightGCN with different β and γ.

Figure 4: Impact of different IB loss parameters (β, σ2) and (γ, σ2).

and fairness. The optimal balance is achieved when β equals
40. Second, after reaching the optimal value for β, a moder-
ate γ can simultaneously improve both fairness and accuracy.
We speculate that this might be a proper bottleneck learn-
ing on the sub-graph side helping to capture noise-sensitive
information in the graph structure, thereby enhancing both
model accuracy and fairness simultaneously. Finally, FairIB
achieves an efficient trade-off of recommendation accuracy
and fairness when β is set to 40 and γ to 10.

Furthermore, we also delve into the impact of ker-
nel function parameter σ2 in Eq. (4) on Movielens-1M.
We investigated various combinations involving σ2 in
[0.1, 0.2, 0.3, 0.4], β in [20, 30, 40, 50] and γ in [0, 5, 10, 15].
As shown in Figure 4, FairIB achieve the best fairness per-
formance (EO@10) when (β = 40, σ2 = 0.3) and (γ =
10, σ2 = 0.3). Comprehensive experiments have verified that
a moderate value for σ2 (i.e., 0.3) significantly contributes to
improving the model’s fairness performance.

6 Conclusion
In this paper, we researched fairness-aware recommender
systems from the information theory perspective. Motivated
by the information bottleneck principle, we proposed a novel
model-agnostic fair representation method FairIB to elimi-
nate the sensitive information from the learned representa-
tions. Specifically, FairIB maximizes the mutual informa-
tion between learned representations and observed interac-
tions, meanwhile minimizing it between representations and
user sensitive attributes. To achieve this goal, we introduced
HSIC-based bottleneck to recommender systems, and applied
to both the user and sub-graph sides. Extensive experiments
on two real-world datasets demonstrated FairIB is effective
in balancing recommendation accuracy-fairness trade-off, ei-
ther in single or multiple sensitive scenarios. In the future, we
would like to extend the proposed method by mining attribute
correlations to address the practical scenario of missing val-
ues for sensitive attributes.
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