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ABSTRACT
Exercise recommendation is a fundamental and important task
in the E-learning system, facilitating students’ personalized learn-
ing. Most existing exercise recommendation algorithms design a
scoring criterion (e.g., weakest mastery, lowest historical correct-
ness) in conjunction with experience, and then recommend the
recommended knowledge concepts (KCs). These algorithms rely
entirely on the scoring criteria by treating exercise recommenda-
tions as a centralized system. However, it is a complex problem
for the centralized system to choose a limited number of exercises
in a period of time to consolidate and learn the KCs efficiently.
Moreover, different groups of students (e.g., different countries,
schools, or classes) have different solutions for the same group of
KCs according to their own situations, in the spirit of competency-
based instructing. Therefore, we proposeMeta Multi-Agent Exercise
Recommendation (MMER). Specifically, we design the multi-agent
exercise recommendation module, in which the KCs involved in
exercises are considered agents with competition and cooperation
among them. And the meta-training stage is designed to learn a
robust recommendation module for new student groups. Extensive
experiments on real-world datasets validate the satisfactory per-
formance of the proposed model. Furthermore, the effectiveness
of the multi-agent and meta-training part is demonstrated for the
model in recommendation applications.

CCS CONCEPTS
• Information systems→ Information systems applications;
• Applied computing→ Education.
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Figure 1: We show an example of an exercise recommenda-
tion system. Given users’ historical interactions with exer-
cises, as well as the annotated KCs (denoted as the blue icons
in this figure), the systems recommends exercises to students
that involve specific KCs.
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1 INTRODUCTION
With the progressive enrichment of learning resources on the In-
ternet, exercise recommendation [30] becomes a fundamental task
in E-learning systems, facilitating students’ personalized learning
[15, 20]. By suggesting suitable exercises, students acquire knowl-
edge instead of searching by themselves [27]. Through an open
environment, students interact individually with the recommenda-
tion system agent to adapt their learning [7].

We show an example of an exercise recommendation system,
presented in Fig. 1. The exercises involve different knowledge con-
cepts (KCs). Given users’ historical interactions with exercises, as
well as the annotated KCs (denoted as the blue icons in this figure),
the systems recommends exercises to students that involve specific
KCs. Based on the above analysis, it can be found that the core of
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the exercise recommendation is to learn an effective recommenda-
tion intelligence that enables users to achieve an efficient learning
effect [16].

Most exercise recommendation models combine experience in
the field of education to design a reasonable scoring criterion (e.g.,
weakest mastery of KCs, lowest correct answers to history exer-
cises). Thus, they find the KCs where students are weak in learning
and recommend exercises related to these KCs. These models can be
categorized from both an educational psychology and data mining
perspective [16]: 1) In a generic data mining perspective, collab-
orative filtering is a classical recommendation method that can
also be applied to exercise recommendation systems [27]. 2) From
the perspective of cognitive diagnosis in education [11], cognitive
diagnostic models can predict students’ performance in answering
exercises involving these KCs by assessing their cognitive state. As
a result, recommendations can be achieved based on the cognitive
diagnostic model to discover the KCs that students do not master.
Huang et al. [16] proposed a multi-objective exercise recommenda-
tion algorithm, arguing that the goals of review and exploration, as
well as smoothness of exercise difficulty, also need to be considered
when making recommendations.

However, most of the existing models face the limitation of local
greedy optimality. The rational selection of a limited number of
exercises to achieve efficient consolidation and learning of KCs
within a period of time is a complex issue. For example, if each
recommended exercise is associated with the KCs that are currently
considered to be the least mastered, then after a period of time, the
KCs that are better mastered will also be forgotten; on the whole,
this period of learning is not efficient. Moreover, different groups of
students (e.g., different countries, schools, or classes) have different
learning solutions for the same group of KCs according to their
own situations, in the spirit of competency-based instructing. These
existing models require a large amount of training data about a cer-
tain group of students if they are to achieve good recommendation
results for them. Their recommendations become less effective if
this group of students lacks a large amount of historical data.

From the perspective of efficient learning of KCs for long-term
gains, a decentralized multi-agent approach is better to find a good
solution to this problem due to the complexity of the exercise rec-
ommendation problem. Therefore, we propose Meta Multi-Agent
Exercise Recommendation (MMER), in which the KCs are regarded
as the agents. Specifically: 1) Each KC as an agent decides whether
it needs to be recommended with reference to its current state of
being learned and those of the others. They have a competitive
and cooperative relationship: Each KC wants to make itself learn
better and thus compete for the limited recommendation quota
(competitive relationship). And it is through the cooperation be-
tween KCs that the overall learning situation is good (cooperative
relationship). 2) Moreover, the meta-training stage is designed for
various agents. In this way, our model can quickly achieve good
results on new tasks with only a few shots (new group students’
exercise recommendations) by learning the robust model with more
tasks (different groups of students’ exercise recommendations). It is
worth noting that there are usually dozens or hundreds of KCs of a
course. They act as a system of agents in multi-agent Reinforcement
Learning (RL) when a large-scale game is applied since applications

Most existing exercise recommendation
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Figure 2: Relationship between limits of existing models and
contribution of this study.

in this domain usually have only a few (at most two) agents. The
main contributions of this study are summarized as follows:
• We propose MMER to achieve efficient learning of KCs for
long-term gains. Dozens or hundreds of KCs are regarded as
the agents, which is the application of a large-scale game.
• We design the meta-training stage for the various agents
in the recommendation task. Thus our model can quickly
achieve good results on new tasks with only few shots.
• Experiments on real-world datasets illustrate the superior
performance of MMER, especially on recommendation for
different student groups. In addition, the ablation experi-
ments demonstrate the effectiveness of themodules inMMER.

2 RELATEDWORK
In this section, related work is presented regarding knowledge
tracing and recommendation systems in education.

2.1 Knowledge Tracing
Learning materials that are coherent with students’ knowledge
states are essential for E-learning systems to help students acquire
more necessary KCs [4, 6, 33].

Knowledge tracing aims to model the dynamic cognitive states of
students considering the time information of students’ exercise logs
[1, 9, 14]. As far as we know, BKT [8] is the first knowledge tracing
model that uses hidden variables in the Hidden Markov Model to
represent a student’s cognitive state. DKT [26] and DKVMN [32]
respectively use neural network technologies such as Recurrent
Neural Networks and Key-ValueMemoryNetworks tomodel knowl-
edge tracing, improving the accuracy of knowledge tracing models.
IEKT [21] optimizes students’ knowledge states during the read
and write stages. This process deep models individual cognition
and acquisition for enhancing the accuracy of knowledge tracing.
DSC_DKT [25] assigns students to various groups with similar
ability at regular time intervals and then traces the cognitive states
of students facing the student groups. AKT [13] used a monotonic
attention mechanism that relates learners’ future responses to their
past responses to achieve better performance and explainability.
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Other representative models improve tracing accuracy by exploring
other rich information in response records. For example, FBKT [18]
explore the fuzzy relation between students’ cognitive states and
exercise scores. EERNN [28] and EKT [19] use textual information
in the knowledge tracing process. CT-NCM [23] is valuable work as
it better models students’ learning and forgetting processes through
continuous-time information.

The above knowledge tracing model can track changes in a
student’s cognitive state over time and predict the student’s score
on exercises given their current state. Therefore, we can recommend
exercises that the student may not have mastered according to the
predictions of the knowledge tracing models.

2.2 Recommendation Systems in Education
Recommender systems are widely used in education [17], and there
is a wide variety of recommended elements, including courses,
learning resources, papers, programming problems, and universities
[11]. The techniques used in these recommender systems mainly
contain traditional collaborative filtering, knowledge-based, and
machine learning-based approaches [17].

Most of the exercises recommended assessing the cognitive state
of students in relation to their knowledge in the field of education.
Thus the above cognitive diagnoses are one of the main supporting
models for exercise recommendations. They tend to recommend
exercises that are associated with KCs that students do not master.
As the research progressed, researchers realized that recommend-
ing exercises based only on mastery or non-mastery may lead to
the problem of recommending exercises that are too difficult for
students to complete at all. Therefore, Huang et al. [16] proposed a
multi-objective exercise recommendation algorithm, arguing that
the goals of review and exploration, as well as smoothness of exer-
cise difficulty, also need to be considered when making recommen-
dations.

3 PROBLEM DEFINITION AND
PRELIMINARIES

The problem definition of this study is presented. And then, mean-
field multi-agent RL is introduced to solve the problem of the large-
scale game, which is an RL process involving a larger number of
agents.

3.1 Problem Definition
In E-learning systems, there are𝑀 groups of students with numbers
(𝑁𝑠1, 𝑁𝑠2, ..., 𝑁𝑠𝑀 ). Each student group 𝑚(𝑚 ∈ {1, 2, ..., 𝑀}) has
historical response logs, denoted as 𝑳𝑚 = (𝑳1𝑚, 𝑳2𝑚, ..., 𝑳

𝑁𝑠𝑚
𝑚 ). Each

log sequence is denoted as 𝑳𝑖𝑚 = (
〈
𝑘𝑖1, 𝑐

𝑖
1
〉
,
〈
𝑘𝑖2, 𝑐

𝑖
2
〉
, ...,

〈
𝑘𝑖
𝑇𝑖
, 𝑐𝑖
𝑇𝑖

〉
),

where 𝑇𝑖 is the total response time steps of student 𝑖 . It indicated
that student 𝑖 answered an exercise examining KC 𝑘𝑖

𝑇𝑖
and the

score is 𝑐𝑖
𝑇𝑖

at time step 𝑡 (𝑡 ∈ {1, 2, ...,𝑇𝑖 }). 𝑐𝑖𝑇𝑖 = 0 if student 𝑖
conducted a wrong answer and 𝑐𝑖

𝑇𝑖
= 1 if he conducted a right

answer. Then, the problem we study in this paper is described as
follows: Given response logs {𝑳1, 𝑳2, ...𝑳𝑀−1} of (𝑀−1) groups and
few logs 𝑳𝑀 of the new group𝑀 , our goal is to recommend exercises
𝒆𝑀 = (𝒆𝑀,1, 𝒆𝑀,2, ..., 𝒆𝑀,𝐷 ) for the student group𝑀 , where 𝐷 is the
number of recommendations at different decision time steps.

3.2 Preliminaries
Preliminaries regarding RL and meta-learning are presented.

3.2.1 Reinforcement Learning. In RL [2, 29], the agent interacts
with the environment and iteratively optimizes based on the reward
it receives. Each state-action pair (𝑠, 𝑎) corresponds to a Q-value
𝑄 (𝑠, 𝑎), based on which the action in a particular state is selected
in the learning process. Q-matrix 𝑸 is updated according to Eq. (1).
The goal of RL is to maximize the cumulative returns.

𝑄 (𝑠, 𝑎) ← (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾 max𝑄 (𝑠′, 𝑎′)

]
, (1)

where (𝑠′, 𝑎′) is the state-action pair after state transition from
state 𝑠 when conducting action 𝑎. 𝑟 is the reward that conducting
action 𝑎 at state 𝑠 . 𝛼 and 𝛾 are the learning and discount factors,
respectively.

Multi-agent RL.Multi-agent RL [5] means that multiple agents
interact with the environment at the same time. Each agent still
follows the goal of RL. The difference is that the change in the
global state of the environment is related to the joint action of all
agents. Therefore, the impact of joint action needs to be considered
during the update process of the Q-matrix, shown in Eq. (2).

𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎− 𝑗 ) ← (1−𝛼)𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎− 𝑗 )+𝛼
[
𝑟 + 𝛾 max𝑄 (𝑠′𝑗 , 𝑎

′
𝑗 , 𝑎
′
− 𝑗 )

]
,

(2)
where 𝑗 and − 𝑗 represent the 𝑗-th agent and the other agents,
respectively.

Meanfieldmulti-agentRL.Most existingmulti-agent RLmeth-
ods are usually limited to situations where the number of agents
is small. When the number of agents increases significantly, the
learning process becomes difficult due to the large increase in di-
mensionality and the increased complexity of interactions between
agents, e.g., the optimization process of max𝑄 (𝑠′, 𝑎′

𝑗
, 𝑎′− 𝑗 ) in Eq.

(2). To address the above problem, Yang et al. [31] proposed the
mean field multi-agent RL. It considers only the interactions of
each agent with its neighboring agents and redefines the Q-value
function as Eq. (3) [31].

𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎− 𝑗 ) =
1
|𝑁 𝑗 |

∑︁
𝑘∈𝑁 𝑗

𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎𝑘 ), (3)

where 𝑁 𝑗 is the neighbor set of agent 𝑗 and |𝑁 𝑗 | is the number
of neighbor agents. This design still maintains global interaction
between each pair of agents [3].𝑄 𝑗 (𝑠, 𝑎 𝑗 , 𝑎𝑘 ) is estimated using the
theory of mean fields as Eq. (4) and was derived through Taylor’s
theorem in [31].

𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎− 𝑗 ) = 𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗 ), (4)

where 𝑎 𝑗 = 1
𝑁 𝑗

∑
𝑘∈𝑁 ( 𝑗 ) 𝑎𝑘 . Based on the above definition, the

Q-value is updated as shown in Eq. (5) [31].

𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗 ) ← (1 − 𝛼)𝑄 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗 ) + 𝛼
[
𝑟 𝑗 + 𝛾𝑣 𝑗 (𝑠′𝑗 )

]
, (5)

where 𝛼 and𝛾 are learning and discount factors, respectively. 𝑣 𝑗 (𝑠′𝑗 )
is the mean filed value function for agent 𝑗 with state 𝑠′

𝑗
at the next

time step.
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3.2.2 Meta Learning. The essence of meta learning, learning to
learn, is the tendency to learn knowledge and experience from
existing tasks so that the model is not ignorant when faced with an
unknown task [12]. Finn et al. [12] proposed model-agnostic meta-
learning (MAML), which can be applied to most gradient-based
models.

4 PROPOSED MODEL
In this section, the proposed model MMER is detailed. First, the
overall architecture (Section 4.1) is introduced. Then, the three
stages (Section 4.2) in the model and the exercise recommenda-
tion module (Section 4.3) in the stages are presented. Notation is
described in Table 1.

Table 1: Notations used in this paper.

Notation Description

𝑀 Number of student groups (tasks)
𝑁 Number of KCs (agents)
𝐷 Total decision time steps
𝑳𝑚 Response logs of the𝑚-th student group
𝒆𝑚 Recommended exercises for the𝑚-th student group
𝑷 Parameters in the exercise recommendation module
L𝑚,G𝑚 Loss and gradient for the𝑚-th task
𝑀𝐹 Mean-filed network
𝑅𝑎𝑛𝑘𝑁𝑒𝑡 Rank-score network
𝑂𝑛𝑙𝑖𝑛𝑒_𝑄 Online Q-network
𝑇𝑎𝑟𝑔𝑒𝑡_𝑄 Target Q-network
𝑶𝒏𝒍 𝒊𝒏𝒆_𝒂 Online action vectors
𝑹𝒂𝒎𝒅𝒐𝒎_𝒂 Random vectors
𝒔 State vectors
𝒂 Action vectors
𝒓 Reward vectors
𝒂 Mean-field action vectors

4.1 Overall Architecture
The overall architecture of the proposed model is illustrated in Fig.
3. The model constructs a meta multi-agent exercise recommenda-
tion system with 𝑁 agents for student groups. The pseudo-code
of MMER in the model is presented in Algorithm 1.

As shown in Fig. 3-(a), it includes three stages, i.e., the meta-
training, the fine-tuning, and the testing stages (detailed in Section
4.2). The meta-training stage is designed to optimize the parameters
in the exercise recommendationmodule, which is detailed in Section
4.2. The multi-agent recommendation module is designed to model
the recommended process for KCs based on their states, which
is detailed in Section 4.3. Specifically, suppose there are 𝑀 tasks
(corresponding to the recommendation tasks for𝑀 student groups).
In the meta-training stage, the response logs {𝑳1, 𝑳2, ...𝑳𝑀−1} of
the former (𝑀 − 1) groups are the experience from existing tasks.
Then, in the fine-tuning stage, facing a new student group𝑀 , the
model is tuned through the few logs 𝑳𝑀 . Finally, in the testing
stage, we recommend exercises 𝒆𝑀 = (𝒆𝑀,1, 𝒆𝑀,2, ..., 𝒆𝑀,𝐷 ) for the
group𝑀 (testing stage).

Algorithm 1 The proposed MMER model.

Input: Response logs {𝑳1, 𝑳2, ...𝑳𝑀−1}; few logs {𝑳𝑀 }; total deci-
sion time steps 𝐷 ;

Output: Recommended exercises 𝒆𝑀 = (𝒆𝑀,1, 𝒆𝑀,2, ..., 𝒆𝑀,𝐷 );
1: Initialize the exercise recommendation module;
2: —Meta-training Stage—
3: while 𝑒𝑝𝑜𝑐ℎ ⩽ 𝐸𝑝𝑜𝑐ℎ do
4: Optimize the learnable parameters in the exercise recom-

mendation module using {𝑳1, 𝑳2, ...𝑳𝑀−1} (Algorithm 2);
5: end while
6: —Fine-tuning Stage—
7: Optimize the learnable parameters in the exercise recommen-

dation module using {𝑳𝑀 };
8: —Testing Stage—
9: Output the recommended exercises 𝒆𝑀 = (𝒆𝑀,1, 𝒆𝑀,2, ..., 𝒆𝑀,𝐷 )

for task𝑀 at 𝐷 decision time steps (Algorithm 3).

Furthermore, the architecture of the exercise recommendation
module in a task is shown in Fig. 3-(b) (detailed in Section 4.3). For
each task𝑚,𝑚 ∈ {1, 2, ..., 𝑀}, there are 𝑁 agents (corresponding to
𝑁 KCs involved in the exercises). They make action decisions based
on their own state and other agents. The list 𝒆 of recommended
exercises for the task is obtained according to the joint actions of
the agents. The task will give rewards (or penalties) to these agents
for their actions. Specifically, each agent selects actions based on the
policy that depend on the initial action, the state, and the mean-filed
actions (the actions of the other agents).

4.2 Meta Optimization Module
The meta-training, the fine-tuning, and the testing stages are intro-
duced. These three stages are for the optimization of the parameters
in the exercise recommendation module.

4.2.1 Meta-training Stage. The meta-training stage is to pre-train
the model through the existing response logs of the other student
groups. In particular, different student groups may be served dif-
ferent learning programs or learning paths, so our model is not
expected to fall into the local optimal solution of any other student
group; instead, we expect to learn a robust model that adapts more
quickly with new tasks. The robust population can be obtained
by the design of this stage because it does not seek to achieve op-
timal on every task to preserve species diversity. There are the
response logs {𝑳1, 𝑳2, ...𝑳𝑀−1} of the former (𝑀 − 1) groups are
the experience from existing tasks.

Desired by the idea of MAML [12], in the meta-training stage,
the logs 𝑳𝑚 for each task𝑚 are split into the training set 𝑳𝑚𝑡𝑟 and
the validation set 𝑳𝑚𝑣𝑎 . The learnable parameters in the exercise
recommendation module 𝑷 are copied to 𝑷1 so that subsequent
operations do not act directly on 𝑷 . First, 𝑷1 is updated to 𝑷2 by
the gradient G𝑚𝑡𝑟 , which is derived from the loss L𝑚𝑡𝑟 obtained
by performing the recommendation task on 𝑳𝑚𝑡𝑟 .

𝑷2 ← 𝑷1 − 𝑙𝑟 ∗ G𝑚𝑡𝑟 , (6)

where 𝑙𝑟 is the learning rate in the optimization process.
Then, the loss L𝑚𝑣𝑎 is computed by performing the exercise

recommendation task on 𝑳𝑚𝑡𝑟 using the parameters 𝑷2. In this
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Figure 3: Overall architecture of the proposed model MMER. It contains the meta optimization module (detailed in Section 4.2)
to optimize the exercise recommendation module (detailed in Section 4.3). Specifically, the exercise recommendation module is
a multi-agent reinforcement learning system, regarding KCs as the agents for recommendation.

way, the parameters 𝑷 in the exercise recommendation module are
optimized by G𝑚𝑣𝑎 , to keep the parameters from falling completely
into fitting the local optimal solution of this task.

𝑷 ← 𝑷 − 𝑙𝑟 ∗ G𝑚𝑣𝑎 . (7)

The pseudo-code of the meta-training stage is presented in Al-
gorithm 2 (Appendix A).

4.2.2 Fine-tuning Stage. After the meta-training stage, the param-
eters in the exercise recommendation module are updated from the
existing (𝑀 − 1) tasks. The parameters learned in the meta-training
stage are not fully adapted to the new task𝑀 because the tasks are
different. However, there are only a few-shots 𝑳𝑀 in the new task
𝑀 . Therefore, in this stage, the population 𝑃 needs to be fine-tuned.

𝑷 ← 𝑷 − 𝑙𝑟 ∗ G𝑀 , (8)

where G𝑀 is derived from the loss L𝑀 obtained by performing the
recommendation task on 𝑳𝑀 . The fine-tuning stage is designed to
accommodate this new task, so the parameters of the process are
optimized in line with the normal flow. The fine-tuning epoch can
be set to 1, and it is also easy to think of multiple times, inspired by
[12].

4.2.3 Testing Stage. In the testing stage, there is no response logs
for the model. The optimized exercise recommendation module (ob-
tained in the fine-tuning stage) is conducted for recommendation.

4.3 Exercise Recommendation Module
The exercise recommendation module works in all three stages (i.e.,
the meta-training, fine-tuning, and testing stages). It is formulated
as a tuple ⟨S,A, 𝑀𝐹,P,R,𝑂𝑛𝑙𝑖𝑛𝑒_𝑄, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑄⟩, representing, in
turn, the state space, action space, mean-filed-network, policy, re-
ward, online Q-network, and target Q-network of the agents. The
proposed module makes recommendations according to the compe-
tition and cooperation among KCs. Each KC’s decision on actions
depends on the states and joint actions of the other KCs to achieve
competition and cooperation. In themodule, the agents are designed
to be homogeneous, that is, their above-mentioned factors are sim-
ilarly designed. The pseudo-code of the exercise recommendation
module is presented in Algorithm 3 (Appendix A).

4.3.1 State and Action Spaces. The state of the agents is described
by the students’ historical correctness in the exercises regarding
the KCs. It is one of the bases for the agent’s choice of action.
S = {𝑆1, 𝑆2, ..., 𝑆𝑛, ..., 𝑆𝑁 } is the set of all agents’ state spaces, where
𝑆𝑛 is the state of the 𝑛-th agent and 𝑁 is the number of agents (i.e.,
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KCs). Each 𝑆𝑛 is denoted as a continuous space. Denote the current
state of agent𝑛 as 𝑠𝑛 ∈ 𝑆𝑛 . When an exercise in the recommendation
list is answered, the state of the corresponding KCs tested in the
exercise is updated as 𝑠′𝑛 = 𝛽𝑠𝑛 + (1− 𝛽)𝑠𝑐𝑜𝑟𝑒𝑎𝑣𝑒 , while the states of
other KCs remain unchanged. 𝑠𝑐𝑜𝑟𝑒𝑎𝑣𝑒 denotes the average score
of exercises that test the KC. 𝛽 is a hyper-parameter which is set to
0.5 in this paper.

The action of agents is described by the level to recommend
exercises involving these KCs. A = {𝐴1, 𝐴2, ..., 𝐴𝑛, ..., 𝐴𝑁 } is the
set of all agents’ action spaces, where𝐴𝑛 is denoted as a continuous
space. The simplest implementation is to set any 𝐴𝑛 to contain
two elements, which involves two actions: recommending and not
recommending.

4.3.2 Mean-filed-network. The mean-filed-network 𝑀𝐹 is to ob-
tain the mean-filed actions 𝒂 = (𝑎1, 𝑎2, ..., 𝑎𝑛, ..., 𝑎𝑁 ), which is one
of the bases for agent’s choice of action. Each 𝑎𝑛 is within a contin-
uous space, denoting the mean actions of the other agents except
the 𝑛-th agent. The mean-filed actions at the 𝑑-th decision time
step are obtained by feeding those at the (𝑑 − 1)-th decision time
step into the𝑀𝐹 network, shown in Eq. (9).

𝒂 ← 𝑀𝐹 (𝒂), (9)

where the𝑀𝐹 consists of two fully-connected layers and a Sigmoid
activation function.

4.3.3 Policy. The policy P of agents is that they select actions
and finally, the resulting joint actions form a recommendation
ranking. Moreover, stochastic exploration is conducted to avoid
getting trapped in a local optimum when the agents select actions.
The action selection satisfies Eq. (10).

𝒂 = 𝜍 ∗ 𝑹𝒂𝒏𝒅𝒐𝒎_𝒂 + (¬𝜍) ∗ 𝑶𝒏𝒍 𝒊𝒏𝒆_𝒂, (10)

where 𝑹𝒂𝒏𝒅𝒐𝒎_𝒂 denotes the random action vector. 𝑶𝒏𝒍 𝒊𝒏𝒆_𝒂
denotes the output action vector of the online Q-network, shown
in Eq. (14). 𝜍 is an exploration flag, where any dimension is true if
the random sample is not greater than the epsilon. 𝜍 is an explo-
ration flag. If 𝜍 is True, the agents execute random actions; if 𝜍 is
False, the agents execute online actions. 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 is the threshold for
exploration. The generated random number 𝑠𝑎𝑚𝑝𝑙𝑒 is compared
with 𝑒𝑝𝑠𝑖𝑙𝑜𝑛. If 𝑠𝑎𝑚𝑝𝑙𝑒 < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, then 𝜍 = 𝑇𝑟𝑢𝑒 , else 𝜍 = 𝐹𝑎𝑙𝑠𝑒 .

Then, the rank score vector 𝒓𝒔 = {𝑟𝑠1, 𝑟𝑠2, ..., 𝑟𝑠𝐸𝐾 } of exercises
is obtained by a network 𝑅𝑎𝑛𝑘𝑁𝑒𝑡 , where 𝐸𝐾 is the number of
exercises in the list. The rank score 𝑟𝑠𝑒𝑘 for each exercise is shown
as Eq. (11).

𝑟𝑠𝑒𝑘 = 𝑅𝑎𝑛𝑘𝑁𝑒𝑡 (𝒂, 𝒌𝑒𝑘 ), 𝑒𝑘 ∈ {1, 2, ..., 𝐸𝐾} (11)

where 𝑅𝑎𝑛𝑘𝑁𝑒𝑡 () consists of two fully-connected layers and a
Sigmoid activation function. 𝒂 is the action vector obtained in Eq.
(10). 𝒌𝑒𝑘 is the vector of dimension𝑁 denoting the relation between
the 𝑒𝑘-th exercise and the KCs. 𝑁 is the number of agents. The 𝑛-th
dimension of 𝒌𝑒𝑘 is 1 represents the 𝑒𝑘-th exercise is related to the
𝑛-th KC. Otherwise, vice versa. Then, the recommendation list of
exercises 𝒆 is obtained as Eq. (12).

𝒆 = arg 𝑡𝑜𝑝𝐾 (𝒓𝒔, 𝐾), (12)

where 𝐾 is the number of exercises to recommend.

4.3.4 Reward. After the recommended exercises are obtained in Eq.
(12). The actions chosen by the agents are rewarded (or punished)
by the student’s answers to the recommended exercises. The reward
𝒓 = {𝑟1, 𝑟2, ..., 𝑟𝑁 } for the agents is presented as Eq. (13).

𝑟𝑛 =

∑𝐸𝐾
𝑒𝑘=1 𝜍𝑒𝑘 ∗ 𝑑 (𝑟𝑠𝑒𝑘 , 𝑡𝑠𝑒𝑘 )∑𝐸𝐾

𝑒𝑘=1 𝜍𝑒𝑘
, 𝑛 ∈ {1, 2, ..., 𝑁 } (13)

where 𝑑 (𝑟𝑠𝑒𝑘 , 𝑡𝑠𝑒𝑘 ) =
√︁
(𝑟𝑠𝑒𝑘 − 𝑡𝑠𝑒𝑘 )2 represents the distance be-

tween 𝑟𝑠𝑒𝑘 and 𝑡𝑠𝑒𝑘 . 𝜍𝑒𝑘 = 1 when the 𝑛-th dimension of 𝒌𝑒𝑘 is 1,
i.e., the 𝑒𝑘-th exercise is related to the 𝑛-th KC. 𝑟𝑠𝑒𝑘 is computed
in Eq. (11). 𝑡𝑠𝑒𝑘 ∈ {0, 1} is the true score of the recommended exer-
cises of the student, representing the incorrect and correct answers,
respectively. The higher the rank score of the exercise that the stu-
dent answered incorrectly, the greater the reward for the KC related
to that exercise. This is because the model wants to recommend
KCs that students do not master as much as possible.

4.3.5 Online Q-network. The online Q-network is designed to ob-
tain agents’ actions based on their states and the joint action of
the other agents. From the perspective of KCs, each KC wants to
be learned better. Each KC decides whether it needs to be recom-
mended or not by referring to its current state of being learned
and the current state of other KCs being learned. Therefore, there
is competition and cooperation among KCs: Each KC wants to be
learned better and thus competes for a limited number of referrals
(competition); Cooperation between KCs is the only way to achieve
a good overall learning situation (cooperation). Therefore, the ac-
tions 𝑶𝒏𝒍 𝒊𝒏𝒆_𝒂 is obtained according to the online Q-network,
shown as Eq. (14).

𝑶𝒏𝒍 𝒊𝒏𝒆_𝒂 = argmax(𝑂𝑛𝑙𝑖𝑛𝑒_𝑄 (𝒔, 𝒂), 𝑑𝑖𝑚 = 1) (14)

where the 𝑂𝑛𝑙𝑖𝑛𝑒_𝑄 consists of two fully-connected layers and a
Sigmoid activation function. 𝒔 represents the current states of the
agents. 𝒂 represents the joint actions, which is obtained in Eq. (9).
Then, 𝒑𝒓𝒆𝒅 is calculated as Eq. (15).

𝒑𝒓𝒆𝒅 = max(𝑂𝑛𝑙𝑖𝑛𝑒_𝑄 (𝒔, 𝒂), 𝑑𝑖𝑚 = 1) (15)

4.3.6 Target Q-network. The target Q-network is designed to guide
the online Q-network in the direction of optimization that maxi-
mizes future returns. Therefore, the target Q-network 𝑄̂ is shown
as Eq. (16).

𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒓 + 𝛾 max(𝑇𝑎𝑟𝑔𝑒𝑡_𝑄 (𝒔′, 𝒂′), 𝑑𝑖𝑚 = 1), (16)

where the structure of 𝑇𝑎𝑟𝑔𝑒𝑡_𝑄 is the same as that of 𝑂𝑛𝑙𝑖𝑛𝑒_𝑄 .
𝒔′ and 𝒂′ represent the next states and joint actions of the agents
after they conduct 𝒂, respectively. 𝛾 is the learning factor. 𝒓 is the
reward, shown in Eq. (13).

4.4 Optimization
The exercise recommendation module is optimized by the three
stages, to minimize the loss L between 𝒑𝒓𝒆𝒅 and 𝒕𝒂𝒓𝒈𝒆𝒕 , i. e.,

L = 𝐿𝑜𝑠𝑠 (𝒑𝒓𝒆𝒅, 𝒕𝒂𝒓𝒈𝒆𝒕), (17)

where 𝐿𝑜𝑠𝑠 represents the MSE_Loss function.
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Table 2: Dataset information (Scenarios 1 and 2 indicate the
training tasks and testing task are from different continents
and the same continent, respectively).

Scenario Training task 1 Training task 2 Testing task

Scenario 1 Asia Europe America
Scenario 2 Europe Europe Europe

5 EXPERIMENTS
Experiments on multiple real data sets are performed to validate
the effectiveness of the proposed model in this section.

5.1 Setup
Setup is introduced including the datasets, baselines, metrics, and
implementation details.

5.1.1 Datasets. The PISA 2015 (Programme for International Stu-
dent Assessment) database1 is a famous real-world database, con-
taining the full set of responses to student groups in various areas
in the world. The database contains the response logs from student
groups in a total of 73 countries or regions. To validate the effec-
tiveness of the proposed model, we have classified these regions
according to the continent they belong to. Different continents
are labeled as different datasets. For each continent, we randomly
selected two of them as training tasks and one as a testing task.
For each task, we selected 1000 student response logs, because the
numbers of students for different tasks widely vary. The task in-
formation of the datasets is presented in Table 2. It is noticed that
the regions are from different continents in the former dataset and
the regions are from the same continent in the latter one. These
two cases can verify the effect of whether the testing task belongs
to the same continent as the training task on the recommendation
performance of the models.

5.1.2 Baselines. The cognitive diagnosis models recommend exer-
cises to students that involve the KCs they do not master by tracing
their mastery status [24]. Using a cognitive diagnostic approach to
complete the exercise recommendation task is the most common
situation in practice [16]. At each decision time step, the baselines
predict the future student’s response score for exercises and execute
the strategy that the smaller the predicted score, the more likely
the exercise is to be recommended. This is fair for comparing the
baselines with our model because the goal of baselines is to mini-
mize the error between their predicted scores and their true scores;
the smaller the error in baselines’ predictions, the greater the hit
rate of the exercises they are recommended. Since the students’
response logs in the dataset are in temporal order, we compare
our model with the knowledge tracing models [22]. Moreover, the
representative exercise recommendation model was compared. The
baselines are introduced as follows.

• BKT [8] first built a knowledge tracing model based on the
hidden Markov model.

1https://www.oecd.org/pisa/data/

Table 3: Parameter settings

Parameters Settings

Epoch 300
𝛾 (Eq. (16)) 0.85
Hidden size 200
Learning rate in optimization 0.005
Learning rate in innerstep 0.001
Epoch for innerstep 5
Recommendation interval 6
Validation ratio 0.5
Fine-tuning ratio 0.2
Fine-tuning epoch 2
Split way student

• DKT [26] first applied the recurrent neural network into the
knowledge tracing field and performed satisfied prediction
results.
• DKVMN [32] exploited the correlation between the KCs
and students’ cognitive levels through keys and values for
knowledge tracing and performance prediction.
• DSC_DKT [25] clusters students to various groups with sim-
ilar ability at regular time intervals and then traces the cog-
nitive states of students facing the student groups.
• AKT [13] used a monotonic attention mechanism that relates
learners’ future responses to their past responses to achieve
better performance and explainability.
• DRE [16] models the exercise recommendation task through
a single-agent system. It considers the multi-objective opti-
mization of review & exploration, difficulty, and engagement
in the long-term learning process.

5.1.3 Metrics. To evaluate the recommendation accuracy of the
proposed model, three widely used metrics, NDCG, Recall, and F1,
are used in the experiments. The larger the value of these metrics,
the better the recommended effect. Due to the recommendation
interval being set to 6, which means a recommendation decision
is made every 6 time steps, we calculated Metrics@𝐾 (where 𝐾
ranges from 1 to 5).

5.1.4 Implementation Details. The implementation details for the
overall comparison are as follows. According to the three stages
in Section 4.2, the training tasks are split into the training and
validation sets; and the testing tasks are split into the fine-tuning
and testing sets. There are twoways to split the datasets, i.e., by time
steps and by students. In the overall comparison, the datasets are
split by students (Section 5.2). And we also analyze the performance
of the proposed model by the two split ways in the ablation studies
(Section 5.3). The parameter settings are presented in Table 3.

5.2 Performance Comparison
The proposed MMER model is compared with the several knowl-
edge tracing models. As for the compared models, they evaluate
the cognitive states of students and thus predict their future per-
formance of exercises. Therefore, the compared models can recom-
mend exercises for students that they have not mastered.
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Table 4: Comparison experiments for tasks (from different continents). MMER outperforms the baselines in most cases,
especially when 𝐾 is small. This is attributed to the meta-training module of the model.

Models 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5
NDCG@1 Recall@1 F1@1 NDCG@2 Recall@2 F1@2 NDCG@3 Recall@3 F1@3 NDCG@4 Recall@4 F1@4 NDCG@5 Recall@5 F1@5

BKT [8] 0.611 0.611 0.758 0.743 0.612 0.763 0.776 0.612 0.759 0.792 0.607 0.755 0.799 0.605 0.754

DKT [26] 0.747 0.747 0.855 0.831 0.706 0.828 0.849 0.677 0.807 0.852 0.651 0.788 0.853 0.620 0.765

DKVMN [32] 0.749 0.749 0.857 0.837 0.713 0.832 0.857 0.675 0.806 0.860 0.644 0.783 0.859 0.622 0.767

DKT_DSC [25] 0.738 0.738 0.849 0.835 0.708 0.829 0.852 0.676 0.807 0.855 0.652 0.789 0.856 0.629 0.772

AKT [13] 0.735 0.735 0.847 0.831 0.707 0.828 0.851 0.679 0.809 0.857 0.650 0.788 0.855 0.629 0.772

DRE [16] 0.745 0.745 0.851 0.835 0.708 0.829 0.852 0.670 0.802 0.848 0.642 0.782 0.849 0.620 0.766

MMER 0.755 0.755 0.860 0.844 0.714 0.833 0.861 0.675 0.806 0.864 0.647 0.786 0.860 0.630 0.773

CD=4.03

7 6 5 4 3 2 1
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3.8 DKT_DSC
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4.7AKT
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Figure 4: Nemenyi tests for the comparison in which tasks from different continents. It demonstrate that our model has a
significant advantage in recommending exercises for the student groups from different regions.

Performance on Scenario 1. The overall comparison results
conducted on Scenario 1 are presented in Tables 4. Since the recom-
mendation interval is set to 5 (Table 3), we demonstrated the values
of three metrics for the cases that 𝐾 = 1 to 5. The higher the values,
the better the metrics. As illustrated in Table 4, the proposed model
outperforms the compared models in most cases, especially when
𝐾 is small. This is attributed to the meta-training module of the
model. The performance of these metrics on different real-world
datasets indicates the effective recommendation performance of
our recommendation algorithm. This demonstrates the superiority
of the proposed algorithm on a new task (a new group of students).

The Nemenyi [10] test is conducted to present the comparison
between MMER and the baselines. The Nemenyi test results are
presented in Figs. 4. In the Nemenyi tests, it is considered that
a significant difference exists if the average ranks of two models
differ by at least one critical difference (CD), which is calculated
using a 5% significance level. The smaller the ranking score, the
better the model metric. In the scenario of tasks from different con-
tinents, MMER has a significant advantage in performing the task
of recommending exercises for the student groups from different
regions, especially for the NDCG and Recall metrics. Hence, the
results of the Nemenyi test verify that MMER model can signifi-
cantly optimize the exercise recommendation for different groups
of students.

Performance on Scenario 2. According to the results in Table
5, MMER performs best in all metrics when 𝐾 = 1, compared to
all comparison models. As for the other cases, MMER can obtain
comparable results compared with the state-of-the-art baselines.
This illustrates that the proposed model is more effective than the

comparison models when the number of recommended exercises
becomes smaller.

5.3 Ablation Studies
The ablation studies are introduced to demonstrate the effective-
ness of the modules in our model. As shown in Fig. 3, the meta-
learning and multi-agent reinforcement learning part contribute to
our model. Therefore, several versions are introduced in this sec-
tion, as shown in Table 8. We divide the fine-tuning set according
to both time (V1-V3) and student (V4-V6) divisions. Specifically,
the full versions of the proposed model are V3 (split by time) and
V6 (split by student). ‘✗’ in ‘meta learning’ represents the models
with the normal optimization process, without differentiating the
gradients on the training and validation sets. ‘✗’ in ‘multi agents’
represents the single agent reinforcement learning. The results of
the ablation studies are illustrated in Tables 6 and 7.

5.3.1 Multi-agent Analysis. The effectiveness of the multi-agent
part is demonstrated by comparing V1 to V2 and V4 to V5. The
results of the three metrics with different values of 𝐾 are shown
in Tables 6 and 7. It is found that all the results of V2 and V5 are
better than those of V1 and V6, respectively. This illustrates the
feasibility and validity of the idea of considering KCs as multi-
agents in recommendation applications.

5.3.2 Meta-training Analysis. The effectiveness of the multi-agent
part is demonstrated by comparing V2 to V3 and V5 to V6. V2, V3,
V5, and V6 are all versions of multi-agent exercises recommenda-
tion. The difference is that V2 and V5 do not use the meta-training
stage in Fig 3. Instead, V2 and V5 use the regular network optimiza-
tion process. As shown in Tables 6 and 7, it is found that all the
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Table 5: Comparison experiments for tasks (from the same continent). MMER performs best when 𝐾 = 1 compared to all the
baselines, demonstrated its effectiveness in single-item recommendation. As for the other cases, MMER can obtain comparable
results compared with the state-of-the-art baselines.

Models 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5
NDCG@1 Recall@1 F1@1 NDCG@2 Recall@2 F1@2 NDCG@3 Recall@3 F1@3 NDCG@4 Recall@4 F1@4 NDCG@5 Recall@5 F1@5

BKT [8] 0.650 0.651 0.788 0.785 0.662 0.796 0.812 0.654 0.791 0.822 0.651 0.789 0.826 0.652 0.790

DKT [26] 0.767 0.767 0.868 0.857 0.741 0.851 0.873 0.717 0.835 0.876 0.695 0.820 0.876 0.677 0.807

DKVMN [32] 0.779 0.779 0.876 0.869 0.754 0.860 0.884 0.724 0.840 0.888 0.700 0.824 0.885 0.679 0.809

DKT_DSC [25] 0.776 0.776 0.874 0.865 0.748 0.856 0.883 0.724 0.840 0.885 0.698 0.822 0.884 0.678 0.808

AKT [13] 0.780 0.780 0.876 0.860 0.759 0.863 0.885 0.731 0.845 0.886 0.702 0.825 0.883 0.681 0.810

DRE [16] 0.779 0.779 0.873 0.865 0.740 0.852 0.878 0.713 0.835 0.884 0.694 0.814 0.873 0.673 0.804

MMER 0.783 0.783 0.878 0.864 0.737 0.849 0.882 0.715 0.834 0.883 0.692 0.818 0.881 0.670 0.803

Table 6: Ablation experiments for various versions of MMER (split by time steps).

Versions 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5
NDCG@1 Recall@1 F1@1 NDCG@2 Recall@2 F1@2 NDCG@3 Recall@3 F1@3 NDCG@4 Recall@4 F1@4 NDCG@5 Recall@5 F1@5

V1 0.671 0.671 0.803 0.780 0.654 0.791 0.812 0.644 0.783 0.821 0.628 0.772 0.825 0.612 0.760

V2 0.692 0.692 0.818 0.792 0.666 0.799 0.823 0.653 0.790 0.832 0.638 0.779 0.834 0.615 0.762

V3 (MMER) 0.725 0.725 0.840 0.822 0.696 0.821 0.844 0.667 0.800 0.851 0.642 0.782 0.852 0.623 0.768

Table 7: Ablation experiments for various versions of MMER (split by students).

Versions 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5
NDCG@1 Recall@1 F1@1 NDCG@2 Recall@2 F1@2 NDCG@3 Recall@3 F1@3 NDCG@4 Recall@4 F1@4 NDCG@5 Recall@5 F1@5

V4 0.699 0.699 0.823 0.801 0.664 0.798 0.825 0.650 0.788 0.834 0.636 0.777 0.837 0.618 0.764

V5 0.740 0.740 0.841 0.813 0.691 0.817 0.838 0.666 0.799 0.845 0.644 0.784 0.847 0.620 0.766

V6 (MMER) 0.755 0.755 0.860 0.844 0.714 0.833 0.861 0.675 0.806 0.864 0.647 0.786 0.860 0.629 0.772

Table 8: Version description.

Versions Meta-training Multi-agents Split way

V1 ✗ ✗ time step
V2 ✗ ✓ time step
V3 ✓ ✓ time step
V4 ✗ ✗ student
V5 ✗ ✓ student
V6 ✓ ✓ student

results of V3 and V6 are better than those of V2 and V5, respectively.
Therefore, the meta-training stage is verified to be effective for op-
timizing the parameters of the exercise recommendation module
in the face of exercise recommendation application scenarios with
various student groups.

6 CONCLUSION AND FUTUREWORK
We propose Meta Multi-Agent Exercise Recommendation (MMER) to
achieve efficient learning of KCs for long-term gains. Specifically,
the KCs with competing and cooperative relationships are treated
as multiple agents in the model; the meta-training stage is designed

for the exercise recommendation module and thus it can quickly
achieve good results on new tasks with only a few shots. Experi-
ments on real-world datasets illustrate the superior performance
of MMER. In addition, the ablation experiments demonstrate the
effectiveness of meta-training and multi-agent parts in MMER. Av-
enues for future work include: 1) Incorporating rich features, such
as difficulty of KCs, forgetting factor of students, text of exercises,
to help agents make the decision; 2) Designing recommendation
strategy that target a broader range of student groups, such as
classrooms, schools, regions, and other similar scenarios.
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A PSEUDO-CODES FOR MODULES IN MMER
The pseudo-code of the meta-training stage and exercise recom-
mendation module are presented in Algorithm 2 and Algorithm
3, respectively. The detials of these two modules are presented in
Section 4.2 and Section 4.3.

Algorithm 2 Meta-training stage of MMER
Input: Response logs {𝑳1, 𝑳2, ...𝑳𝑀−1 } for𝑀 − 1 student groups;
Output: Updated 𝑷 ;
1: 𝑷 ← all the learnable parameters in the exercise recommendation module;
2: 𝑷 1 ← 𝑷 , G = 0;
3: for each 𝑳𝑚 ∈ {𝑳1, 𝑳2, ...𝑳𝑀−1 } do
4: Split 𝑳𝑚 into the training and validation sets 𝑳𝑚𝑡𝑟 , 𝑳𝑚𝑣𝑎 ;
5: for each innerstep do
6: if innerstep starts then
7: Compute the loss L𝑚𝑡𝑟 and the gradient𝐺𝑚𝑡𝑟 through 𝑳𝑚𝑡𝑟 using 𝑷 1

(Algorithm 3);
8: Obtain 𝑷 2 ← 𝑷 1 − 𝑙𝑟2 ∗ G𝑚𝑡𝑟 ;
9: end if
10: Compute the loss L𝑚𝑡𝑟 and the gradient 𝐺𝑚𝑡𝑟 through 𝑳𝑚𝑡𝑟 using 𝑷 2

(Algorithm 3);
11: Obtain 𝑷 2 ← 𝑷 2 − 𝑙𝑟2 ∗ G𝑚𝑡𝑟 ;
12: Compute the loss L𝑚𝑣𝑎 and the gradient G𝑚𝑣𝑎 through 𝑳𝑚𝑣𝑎 using 𝑷 2

(Algorithm 3);
13: if innerstep ends then
14: G = G + G𝑚𝑣𝑎 ;
15: end if
16: end for
17: end for
18: Update 𝑷 ← 𝑷 − 𝑙𝑟1 ∗ G.

B EXPERIMENTS OF ONLINE EVALUATION
Online exercise recommendation is an important application to
intelligent education systems. The systems recommend exercises
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Table 9: Statistics of the used datasets.

Dataset Training data Fine-tuning data Testing data
# Students # Logs Ave. steps Correct rate # Students # Logs Ave. steps Correct rate # Students # Logs Ave. steps Correct rate

Scenario 1 2,000 58,401 29.200 0.508 200 5,145 25.725 0.413 800 21,002 26.253 0.398
Scenario 2 2,000 58,135 29.068 0.520 200 4,422 22.110 0.335 800 20,048 25.060 0.349

Scenario 1-all 12,434 359,055 28.877 0.517 1,204 31,530 26.188 0.399 4,820 127,365 26.424 0.398

Table 10: Comparison experiments for tasks fromdifferent continents (Scenario 1-all). MMERdemonstrated its best performance
when 𝐾 = 1. Moreover, MMER outperforms baselines in NDCG metrics in all cases. In other cases, MMER can also exhibit
near-optimal performance. It reflects the effectiveness of MMER.

Models 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5
NDCG@1 Recall@1 F1@1 NDCG@2 Recall@2 F1@2 NDCG@3 Recall@3 F1@3 NDCG@4 Recall@4 F1@4 NDCG@5 Recall@5 F1@5

BKT [8] 0.597 0.597 0.748 0.737 0.608 0.756 0.777 0.605 0.754 0.792 0.600 0.750 0.800 0.599 0.749

DKT [26] 0.731 0.731 0.845 0.830 0.706 0.828 0.849 0.674 0.805 0.854 0.641 0.781 0.854 0.618 0.764

DKVMN [32] 0.737 0.737 0.849 0.831 0.704 0.826 0.854 0.676 0.807 0.860 0.652 0.789 0.860 0.628 0.771

DKT_DSC [25] 0.744 0.744 0.853 0.837 0.706 0.828 0.856 0.669 0.802 0.858 0.645 0.784 0.857 0.624 0.769

AKT [13] 0.742 0.742 0.852 0.838 0.713 0.832 0.858 0.683 0.812 0.862 0.655 0.792 0.861 0.631 0.773

DRE [16] 0.745 0.745 0.854 0.837 0.701 0.824 0.855 0.667 0.800 0.857 0.643 0.783 0.856 0.624 0.768

MMER 0.748 0.748 0.856 0.841 0.710 0.830 0.861 0.681 0.810 0.865 0.652 0.789 0.864 0.628 0.771

Algorithm 3 Exercise Recommendation Module
Input: 𝑷 = ⟨S,A, 𝑀𝐹, P, R,𝑂𝑛𝑙𝑖𝑛𝑒_𝑄,𝑇𝑎𝑟𝑔𝑒𝑡_𝑄 ⟩ , 𝐷
Output: 𝒆𝑚, L𝑚, G𝑚
1: Initialize 𝒔, 𝒂;
2: for 𝑑 = 1 to 𝐷,𝑑 + + do
3: Update 𝒂 according to 𝑶𝒏𝒍 𝒊𝒏𝒆_𝒂 (Eq. (10));
4: Obtain 𝒆𝑚,𝑑 (Eq. (12)) and 𝒓 (Eq. (13)) through 𝒂, 𝑳𝑚 ;
5: Update 𝒔′ and 𝒂′ ;
6: Obtain 𝒕𝒂𝒓𝒈𝒆𝒕𝑫 and 𝒑𝒓𝒆𝒅𝑫 using 𝒓, 𝒔′, 𝒂′,𝑇𝑎𝑟𝑔𝑒𝑡_𝑄 and 𝒔, 𝒂,𝑂𝑛𝑙𝑖𝑛𝑒_𝑄 ,

respectively;
7: end for
8: 𝒆𝑚 = (𝒆𝑚,1, 𝒆𝑚,2, ..., 𝒆𝑚,𝐷 ) ;
9: 𝒕𝒂𝒓𝒈𝒆𝒕 = (𝒕𝒂𝒓𝒈𝒆𝒕1, 𝒕𝒂𝒓𝒈𝒆𝒕2, ..., 𝒕𝒂𝒓𝒈𝒆𝒕𝑫 ) ;
10: 𝒑𝒓𝒆𝒅 = (𝒑𝒓𝒆𝒅1, 𝒑𝒓𝒆𝒅2, ..., 𝒑𝒓𝒆𝒅𝑫 ) ;
11: Compute the loss L𝑚 and then obtain the gradient G𝑚 (Eq. (17)).

step by step for students such that we focus on the step-wise eval-
uation (i.e., hit@1) for the recommendation. To demonstrate the
effectiveness of MMER in the online scenario, it was conducted
by interacting with a simulator and receiving real-time rewards
from students [16]. The simulator needs to be highly accurate in
evaluating the students’ cognitive states and predicting response
performance. AKT [13] performs satisfied performance compared
with the state-of-the-art knowledge tracing models. Therefore, we
evaluate MMER in the online scenario by interacting with the AKT
simulator. It is noticed that the selection of a simulator is not our
concern in the experiment.

Specifically, we used 50% of the datasets to training the AKT
model and 50% to conduct the online recommendation. We com-
pared the proposed model with random recommendation, shown in
Fig. 5. It demonstrated the effectiveness of online recommendation
of the proposed model.

Decision time step

H
it

@
1

Figure 5: Hit results of online exercise recommendation.

C DISCUSSION
Wepresent the scalability experiments on the number of students, as
shown in Table 10. The statistic of the datasets is presented in Table
9. MMER demonstrated its best performance when𝐾 = 1. Moreover,
MMER outperforms baselines in NDCGmetrics in all cases. In other
cases, MMER can also exhibit near-optimal performance. It reflects
the effectiveness of MMER. The consistency between the results
of MMER on Scenario 1-all (Table 10) and Scenario 1 (Table 4)
demonstrates the scalability of the proposed model.

In addition, an increasing number of KCs can be achieved by
expanding the feature dimensions of MMER. There are 74 KCs
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in the PISA dataset which is used in our experiments. It is worth
mentioning that the numbers of KCs in real-world datasets are not

very large. Thus, MMER can meet the requirements for the number
of KCs in the field of education data mining.
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