
Joint Item Recommendation and Attribute Inference:
An Adaptive Graph Convolutional Network Approach

Le Wu
Key Laboratory of Knowledge

Engineering with Big Data, Hefei
University of Technology

School of Computer Science and
Information Engineering, Hefei

University of Technology
lewu.ustc@gmail.com

Yonghui Yang
Key Laboratory of Knowledge

Engineering with Big Data, Hefei
University of Technology

School of Computer Science and
Information Engineering, Hefei

University of Technology
yyh.hfut@gmail.com

Kun Zhang
Key Laboratory of Knowledge

Engineering with Big Data, Hefei
University of Technology

School of Computer Science and
Information Engineering, Hefei

University of Technology
zhang1028kun@gmail.com

Richang Hong
Key Laboratory of Knowledge

Engineering with Big Data, Hefei
University of Technology

School of Computer Science and
Information Engineering, Hefei

University of Technology
hongrc.hfut@gmail.com

Yanjie Fu
College of Engineering and Computer
Science, University of Central Florida

yanjie.fu@ucf.edu

Meng Wang∗
Key Laboratory of Knowledge

Engineering with Big Data, Hefei
University of Technology

School of Computer Science and
Information Engineering, Hefei

University of Technology
eric.mengwang@gmail.com

ABSTRACT
In many recommender systems, users and items are associated with
attributes, and users show preferences to items. The attribute infor-
mation describes users’ (items’) characteristics and has a wide range
of applications, such as user profiling, item annotation, and feature-
enhanced recommendation. As annotating user (item) attributes is
a labor intensive task, the attribute values are often incomplete with
many missing attribute values. Therefore, item recommendation and
attribute inference have become two main tasks in these platforms.
Researchers have long converged that user (item) attributes and
the preference behavior are highly correlated. Some researchers
proposed to leverage one kind of data for the remaining task, and
showed to improve performance. Nevertheless, these models either
neglected the incompleteness of user (item) attributes or regarded
the correlation of the two tasks with simple models, leading to
suboptimal performance of these two tasks.

To this end, in this paper, we define these two tasks in an at-
tributed user-item bipartite graph, and propose an Adaptive Graph
Convolutional Network (AGCN) approach for joint item recommen-
dation and attribute inference. The key idea of AGCN is to itera-
tively perform two parts: 1) Learning graph embedding parameters
with previously learned approximated attribute values to facilitate

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401144

two tasks; 2) Sending the approximated updated attribute values
back to the attributed graph for better graph embedding learning.
Therefore, AGCN could adaptively adjust the graph embedding
learning parameters by incorporating both the given attributes and
the estimated attribute values, in order to provide weakly super-
vised information to refine the two tasks. Extensive experimental
results on three real-world datasets clearly show the effectiveness
of the proposed model.

CCS CONCEPTS
• Information systems → Collaborative filtering; Personal-
ization; Recommender systems.

KEYWORDS
attribute inference, graph convolutional networks, collaborative
filtering, feature enhanced recommendation, user profiling
ACM Reference Format:
Le Wu, Yonghui Yang, Kun Zhang, Richang Hong, Yanjie Fu, and Meng
Wang. 2020. Joint Item Recommendation and Attribute Inference: An Adap-
tive Graph Convolutional Network Approach . In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3397271.3401144

1 INTRODUCTION
Collaborative Filtering (CF) is one of the most popular approaches
for recommender systems, which suggests personalized item rec-
ommendation by collaboratively learning user and item embed-
dings from user-item behavior [31, 37]. However, as users’ behavior
data are usually sparse, CF suffers from the cold-start problem. A
possible solution to solve the cold-start problem is to introduce
auxiliary data for recommendation, such as text [22, 34, 40], social
networks [43, 45], user (item) features and so on. Among them,

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

679

https://doi.org/10.1145/3397271.3401144
https://doi.org/10.1145/3397271.3401144

user (item) features are very common in most social platforms. E.g.,
users have pages to show their personal profiles, including age,
gender, occupation and so on. Items are annotated with tag infor-
mation, such as movies are annotated with multiple genres (action,
adventure, romance and so on). As user and item attributes describe
user and item content information, given the complete attribute
feature vector of each user (item), attribute enhanced collaborative
filtering models have been proposed to tackle the cold-start prob-
lem [5, 36]. These models extended CF with additional bias terms
or modeled feature interactions for preference prediction.

For most attribute enhanced recommendation models, a simple
assumption is that the attribute values are complete. However, as
annotating user (item) attributes is a labor intensive task, many
attribute values are often incomplete with missing attribute val-
ues. E.g., some users are unwilling to fill their gender attributes
while others do not show their ages. Therefore, attribute inference
has become a main task in these recommendation platforms, with
applications such as user (item) search with a particular attribute,
user profiling, item semantic understanding, and so on. By treating
user-item interaction behavior as an attributed graph with par-
tially known attributes, semi-supervised learning models infer each
missing attribute of a user (item) by collectively modeling node
attributes and graph structure of different nodes [3, 21, 48, 49]. Most
classical semi-supervised approaches modeled label correlations in
the graph, such as label propagation [48] or graph regularization [3].
Recently, Graph Convolutional Networks (GCN) have shown huge
success for semi-supervised learning, which iteratively combines
node attributes and graph structures with convolutional operations
for learning a dense node embedding vector. Then, the learned
user (item) embeddings are directly fed into a simple linear model
for attribute inference [13, 21, 26].

With the user-item behavior data and incomplete user (item)
attributes, most researchers focused on leveraging one kind of data
for the remaining task, i.e., attribute enhanced item recommen-
dation or semi-supervised attribute inference with the user-item
bipartite graph. We argue that these two tasks are correlated and
should not be modeled in an isolated way. On one hand, as the
attribute values are incomplete, most attribute enhanced recom-
mendation algorithms take the inferred attribute values as input for
item recommendation. On the other hand, users’ behaviors to items
could well reflect user and item attributes [24]. As both the behavior
data and the attribute data are sparse, modeling these two tasks
together would allow them to mutually reinforce each other. Some
works made preliminary attempts to jointly model the correlation
of these two tasks [12, 46]. By reformulating the available data as
an attributed graph, these models usually relied on classical graph
based models to predict these two tasks, such as label propagation
and graph link prediction, and are optimized in a joint loss function
that combines two tasks. These models showed superior perfor-
mance compared to modeling these two tasks separately. However,
these models relied on classical shallow semi-supervised learning
models, and the performance is still unsatisfactory.

In this paper, we tackle the joint item recommendation and at-
tribute inference under GCN based approaches. We choose GCN as
the base model as it naturally inherits the power of deep learning
models for automatically representation learning ability, and shows
superior performance for various graph-based tasks [21], such as

item recommendation in the user-item bipartite graph [4, 41, 42],
node classification and clustering [1, 21]. Given the user-item at-
tributed graph with some missing data, a naive idea for jointly
modeling these two tasks is to apply GCNs to learn the user and
item embeddings, with the final optimization function consists of
combining attribute inference loss and item recommendation loss.
However, most GCNs assume the input feature is complete and
could not tackle the missing attribute values. Therefore, the key
challenge lies in the incompleteness of the attributes, which ap-
pears in both the input data and treated as the prediction variable.
In other words, the learning process of GCNs relies on the com-
plete input attribute values to inform user (item) embedding, while
the learned user (item) embedding are beneficial for the missing
attribute inference. Simply filling the missing attributes with static
precomputed values would lead to weak local optimal performance
as the input data is noisy.

To tackle this challenge, we propose an Adaptive Graph Con-
volutional Network (AGCN) for both item recommendation and
attribute inference. The main idea of AGCN is that, instead of
sending fixed values to complete the missing attributes into GCN,
AGCN adaptively performs the two steps: adjusting the graph em-
bedding learning parameters with estimated attribute values to
facilitate both attribute inference and item recommendation, and
updating the graph input with the newly approximated updated
attribute values. Therefore, AGCN could adaptively learn the best
GCN parameters to sever both tasks. Finally, we conduct extensive
experimental results on three real-world datasets. The experimen-
tal results clearly show the effectiveness of our proposed model
for both item recommendation and attribute inference. E.g., our
proposed model shows about 7% improvement for item recommen-
dation and more than 10% improvement for attribute inference
compared to the best baselines.

2 RELATEDWORK
CF has been widely used in most recommender systems due to its
relatively high performance with easy to collect data [19, 28, 44].
Classical latent factor based models relied on matrix factorization
for user and item embedding learning [6, 7, 23, 31]. As most users
implicitly express their item preferences, Bayesian Personalized
Ranking (BPR) was proposed with a ranking based loss function to
deal with the implicit feedback [37]. In practice, CF based models
suffer from the cold-start problem and could not perform well when
users have limited rating records [33]. To tackle the data sparsity
issue, many efforts have been devoted to incorporate auxiliary in-
formation in CF based models, such as user (item) attributes [35],
item content [16], social network [39?], and so on. Among them,
attribute enhanced CF are widely studied as the attribute informa-
tion are easy to collect in most platforms. Researchers proposed
to mimic the latent factor distribution with the associated features
of users and items [2]. SVDFeature extended over classical latent
factor based models with additional bias terms, which are learned
from the associated attributes [5]. Factorization machines modeled
pairwise interactions between all features and was a generalized
model since they can mimic most factorization models with feature
engineering [35, 36]. All these feature enhanced CF models assume

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

680

that the attribute information is complete. However, in the real-
world, user and item attributes are incomplete with many missing
values. As these models could not tackle the missing feature value
issue, a preprocessing step is usually adopted to fill the missing
values, such as each missing attribute value is filled by the aver-
age value, or a computational model to predict the missing values
at first [18, 38]. Instead of using preprocessing step to tackle the
missing attribute problem, we design a model that learns attribute
inference and item recommendation at the same time.

Recently, GCNs have shown huge success for graph represen-
tation learning and related applications [13, 21, 41]. As the user-
item behavior could be naturally regarded as a graph structure,
researchers proposed graph based recommendation models for bet-
ter user and item embedding learning [41, 42, 45, 47]. E.g., PinSage
is a state-of-the-art content based GCN model for item recommen-
dation, which incorporates both graph structure as well as node
features for representation learning [47]. Given the user and item
free embedding as input, NGCF performs neural graph collaborative
filtering, with each user’s (item’s) node embedding is recursively
updated from the local neighbors’ embeddings [42]. LR-GCCF is a
general GCN based CF model with simplified linear graph convolu-
tion operations and residual learning between different layers, and
shows better recommendation performance without annoying non-
linear activation function tuning process. Most current GCN based
recommendation models either fall in to the CF category or the
content based recommendation. Our work differs from these mod-
els as we simultaneously consider the propagation of collaborative
signals and node attributes with missing attributes.

Our work is also closely related to attribute inference on so-
cial platforms. We could cast each attribute inference as a super-
vised classification (regression) problem by treating the remaining
attributes as input features, and attribute values of the current
attribute as labels [2]. However, this simple idea fails when the
attribute information is incomplete with a large number of miss-
ing values. In fact, sociologists have long converged that users’
behaviors and their attributes are highly correlated, termed as the
homophily effect [24, 30]. Instead of the two stage framework of
first user (item) embedding learning followed by the supervised
attribute prediction, a more intuitive idea is to directly perform
semi-supervised attribute inference given the user-item behavior
graph. Label propagation investigated how to disseminate avail-
able attribute information in the graph for attribute inference [48].
However, the model neglected the correlation of different attributes
in the modeling process. Graph manifold was a general solution to
semi-supervised learning and it extended over classical supervised
learning models with a graph Laplacian regularization term [3].
GCNs have been the state-of-the-art models for graph based tasks,
such as node classification, node clustering, and community de-
tection [8, 20, 21]. GCNs could encode the graph structure for rep-
resentation learning by taking the node features and the graph
structure, with a supervised target for nodes with labels [13, 26, 41].
We borrow the advantage of GCNs for semi-supervised learning,
and design an adaptive graph convolutional model to tackle the
missing attribute problem.

Due to the reinforcement relationship between these two tasks,
some works have considered to jointly predict these two tasks
in a unified framework [12, 46]. These models have reformulated

the available data as an attributed graph, and designed joint op-
timization functions from these two tasks based on the classical
item recommendation model and attribute inference model. E.g, re-
searchers summarized various classical link prediction and attribute
inference models [12]. BLA iteratively performed label propaga-
tion for attribute inference, and biased random walks with learned
attributes for item recommendation [46]. Despite the improved
performance compared to single task modeling, these models relied
on the classical shallow graph based models or random walk based
approaches for the two prediction tasks. Therefore, these models
suffer from huge time complexity and could not well encode the
complex global structure to facilitate these two tasks.

3 PROBLEM DEFINITION
In a recommender system, there are two sets of entities: a user-
set U (|U |=M), and an itemset V (|V |=N). Since implicit feedback
is very common, we use a rating matrix R ∈ RM×N to denote users’
implicit feedback to items, with rai =1 if user a has connection with
item i , otherwise it equals 0. Besides the rating information, users
and items are often associated with attributes. We use X ∈ Rdx ×M

and Y ∈ Rdy×N to denote user and item attribute matrix, where dx
and dy are the dimension of user and item attributes, respectively.

In the real world, user and item attributes are often incomplete.
We use AX ∈ Rdx ×M as the user attribute indication matrix, with
aXiu = 1 denotes the ith attribute of user u is available. Under this
circumstance, xiu shows the detailed ith value of useru. In contrast,
aXiu = 0 denotes the ith attribute of user u is missing. Similarly,
we use AY ∈ Rdy×N to denote the item attribute indication matrix,
with aYjv = 0 representing the jth attribute of item v is available,
otherwise it equals 0. Then, the problem we study in this paper is
defined as:

Definition 3.1. In a recommender system, given the user set U ,
item set V , user-item preference matrix R ∈ RM×N , user attribute
matrix X ∈ Rdx ×M and attribute value indication matrix AX ∈

Rdx ×M , item attribute matrix Y ∈ Rdy×N along with item attribute
value indication matrix AY ∈ Rdy×N , our goals are to recommend
items to users and predict the missing attribute values of either
users or items. These two goals can be formulated as follows:

• Item Recommendation: This goal aims at predicting users’
preferences to unrelated items as: R̂ = f (G = [U ,V ,R,X,Y,AX ,

AY]), where R̂ ∈ RM×N denotes the predicted rating matrix.
• Attribute Inference: This goal is to predict the missing at-
tribute values of users or items as: X̂ = дX (G), Ŷ = дY (G),
where X̂ and Ŷ mean the predicted user attribute matrix and
item attribute matrix, respectively.

4 THE PROPOSED MODEL
In this section, we would introduce our proposed AGCN model for
joint item recommendation and attribute inference. We would first
introduce the overall architecture of the proposed model, followed
by the model optimization process.

4.1 Overall Architecture
Figure 1 illustrates the overall architecture of our proposed AGCN,
which contains two iterative main modules: graph learning module

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

681

free embedding

free embedding

user attributes

item attributes

1+l
ax

Kl
au
,

Kl
iv
,

layer 1 layer 2 layer K

2,l
au

2,l
iv1,l

iv

1,l
au

0,l
au

0,l
iv

…

…

1+l
iy

l
iy

l
ax

ap

iq

? ?

?

Graph learning module

Attribute update module

Attribute update module

item i

user a

…

rating prediction

air̂

attribute
inference

attribute
inference

Figure 1: The overall framework of our proposed model.

and attribute update module. At each iteration l , the graph learning
module takes the predicted l-th attribute values as input, and learns
the network parameters. By feeding the learned graph parameters
and user (item) embeddings into the attribute update module, this
module is designed to infer missing user (item) attribute values.
After that, the missing attributed values are updated as the (l + 1)th
approximated attribute value and are sent back to the graph learning
module. These two modules are iterated from l = 0 until the model
converges.

4.2 Graph Learning Module
At each iteration l , the graph learning module contains two compo-
nents: the embedding fusion layer and the embedding propagation
layers. The embedding fusion layer fuses each node’s free embed-
ding, as well as approximated attribute values at the lth iteration.
The embedding propagating layers propagate the fused embeddings
in order to capture the higher-order graph structure for user (item)
representation learning.

Embedding Fusion Layer. Similar to many embedding based
models, we use P ∈ Rd×M and Q ∈ Rd×N to denote the free em-
bedding matrix of user and item respectively. The free embedding
matrix could capture the collaborative latent representations of
users and items [4, 17, 37]. Therefore, each user a’s free embedding
is denoted as the ath column of P, i.e, pa . Similarly, each item i’s
free embedding is denoted as qi , which is the ith column of Q.

At the lth iteration, the approximated user and item attribute
input are denoted as Xl ∈ Rdx ×M and Yl ∈ Rdy×N , which is learned
from the (l − 1)th attribute update module. Given the approximated
user attribute vector xla , and the approximated item attribute vector
yli , we fuse the free embedding and the attribute embedding to get
the fused embeddings as:

ul ,0a = [pa , xla × Wu], (1)

vl ,0i = [qi , yli × Wv], (2)

where Wu ∈ Rdx ×da and Wv ∈ Rdy×da are two transformation ma-
trices that need to be learnt. Along this line, AGCN could represent
users and items with both the collaborative signal and the content
signal.

Specifically, at the 0-th iteration, we do not have any estimated
missing attribute values learned in the attribute update module.
In practice, we set X0 and Y0 as the average of the mean of the
available attribute values:

x 0
f a =

∑M−1
b=0 Xf b × aXf b∑M−1

b=0 aXf b
, y0

f i =

∑N−1
j=0 yf j × aYf j∑N−1

j=0 aYf j
, (3)

where axf b is an element of user attribute indication matrix AX , and

aYf j is an element of item indication matrix AY .
Embedding Propagation Layers. In this part, we propagate

users’ (items’) fused embeddings to capture the high-order prox-
imity between users and items for better user and item embedding
learning. The inputs of this layer are the fusion user embeddings ula
and fusion item embeddings vli . Due to the embedding fusion, the
user (item) attributes will be propagated along with the user (item)
free embeddings in GCN.

To be specific, let ul ,ka and vl ,ki denote user a and item j em-
beddings in the kth layer. Their embeddings in the (k + 1)th layer
can be defined by their fusion embeddings and the aggregation of
corresponding connected items (users) embeddings in kth layer.
This process can be formulated as follows:

ul ,k+1a = (ul ,ka +
∑
j∈Ra

vl ,kj
|Ra |

) × Wk+1, (4)

vl ,k+1i = (vl ,ki +
∑
b∈Si

ul ,kb
|Si |

) × Wk+1, (5)

where Ra = {i |Rai =1} ⊆ I is the item set that user a interacts with.
Similarly, Si = {a |Rai = 1} ⊆ U is the user set who interact with
item i . Wk+1 ∈ R(d+da)×(d+da) is a transformation matrix in the kth
layer propagation of user-item graph. Please note that, in the above
equations, we use the linear convolutional operations without any

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

682

non-linear activations, as this simple operation shows simplicity,
and outperforms its counterparts with non-linear transformations
in CF [4]. Thus, each user’s (item’s) k-order neighbors embedding
will be propagated at (k + 1)th embedding propagation layer.

To better illustrate the propagation process, we formulate the em-
bedding propagation as a matrix form. Let A denote the adjacency
matrix of user-item bipartite graph with (M + N) nodes:

A =
[

R 0N×M

0M×N RT

]
. (6)

Let Ul ,k and Vl ,k denote the fusion embedding matrices of users
and items at the kth layer in the l-th iteration, the fusion embedding
matrix at (k + 1)th layer is defined as:[

Ul ,k+1

Vl ,k+1

]
= (

[
Ul ,k

Vl ,k

]
+ D−0.5AD0.5 ×

[
Ul ,k

Vl ,k

]
) × Wk+1, (7)

where D is the degree matrix of A, which aims to smooth the clus-
tered neighbors’ embeddings. This matrix form of propagation takes
all users (items) into propagation and updates the corresponding
fusion matrices simultaneously in an efficient way.

4.3 Attribute Update Module
This module is consist of two parts: prediction part and attribute
update part. The prediction part predicts the user preference for
item recommendation and attribute inference. The attribute update
part updates the missing user and item attributes according to the
inferred attribute values.

Prediction Part. Given the propagation depth K , we could ob-
tain the final embedding ul ,Ka for user a and final embedding vl ,Ki
for item i after K iterative propagation layers. Thus, the preference
of user a for item i can be defined as follows:

r̂ai =< ul ,Ka , v
l ,K
i >, (8)

where <,> denotes vector inner product operation.
For attribute inference task, we also make full use of the learned

user and item embeddings output by propagation layers. We lever-
age the final embedding ul ,Ka for user a and final embedding vl ,Ki
for item i to infer the missing values of attributes as follows:

x̂a = sof tmax (ul ,Ka × Wx),

ŷi = sof tmax (vl ,Ki × Wy),
(9)

where Wx ∈ R(d+da)×dx and Wy ∈ R(d+da)×dy are the transforma-
tion matrices that need to be learnt.

Attribute Update Part. After inferring user attribute matrix
X̂ and item attribute matrix Ŷ, we adaptively update the missing
attribute values with our inferred results. And the available attribute
values would keep the same. Then, the (l + 1)th update for user and
item attributes can be formulated as follows:

Xl+1 = Xl · AX + X̂ · (IX − AX),

Yl+1 = Yl · AY + Ŷ · (IY − AY)
(10)

where IX ∈ Rdx ×M and IY ∈ Rdy×N are matrices with all elements
of 1. The updated user attribute matrix and item attribute matrix
are sent back to the graph learning module for next training itera-
tion ((l + 1)th iteration) until convergence.

4.4 Model Optimization
Since the task in this paper contains two targets, the optimization
also consists of two parts: item recommendation loss and attribute
inference loss. We compute each part’s objective function and com-
bine them for final optimization.

ItemRecommendation Loss.We employ the pairwise ranking
based BPR loss [23, 37], which assumes that the observed items’
prediction values should be higher than those unobserved. The
objective function can be formulated as follows:

argmin
Θr

Lr =

M−1∑
a=0

∑
(i , j)∈Da

−lnσ (r̂ai − r̂aj) + λ | |Θ1 | |
2, (11)

where σ (x) is a sigmoid function, Θr = [Θ1, Θ2] is the parameter set
in item recommendation, with Θ1 = [P,Q] is user and item free
embedding matrices, Θ2 = [[Wk]Kk=1,Wu ,Wv]. λ is a regulariza-
tion parameter that restraints the complexity of user and item free
latent embedding matrices. Da = {(i , j) |i ∈ Ra∧j < Ra } denotes the
pairwise training data for user a. Ra represents the item set that
user a has rated.

Attribute Inference Loss. Since attribute inference task can be
formulated as a classification task, we use cross entropy loss [25, 27]
to measure the error of inferred attributes as follows:

argmin
Θa

La = loss(X, X̂, AX) + loss(Y, Ŷ, AY)

=

M−1∑
j=0

dx −1∑
i=0

−xi j loдx̂i jaXi j +
N−1∑
j=0

dy−1∑
i=0

−yi j loдŷi jaYi j , (12)

where Θa = [Wx , Wy] is the parameter set in the attribute update
module.

After obtaining the two tasks’ objective functions, we set a pa-
rameter γ to balance the item recommendation loss and attribute
inference loss. The final optimization can be formulated as follows:

argmin
Θ

L = Lr + γ La , (13)

where Θ = [Θr ,Θa] are all parameters in the final objective func-
tion. We implement the proposed model with TensorFlow1. We
leverage Adam optimizer to train the model. As we emphasized
in update attributes part, the training process is a recyclable pro-
cess instead of end to end form. Since our inferred users (items)
attributes will update the initialized users (items) attributes, we
repeat this process until model convergence. The detailed algorithm
for training is illustrated in Algorithm 1.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets Description. To evaluate the effectiveness of our
proposed model, we conduct experiments on three public datasets:
Amazon-Video Games, Movielens-1M, Movielens-20M.
1) Amazon-Video Games. Amazon datasets contain users’ im-
plicit feedbacks and rich product attributes (such as size, price,
platform and category) [15, 29]. As the original dataset of product
attributes are noisy with many attributes have appeared rarely, we

1https://www.tensorflow.org

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

683

Algorithm 1: The Algorithm of AGCN

Input: User-item bipartite Graph G; graph propagation depth K ;
Output: Parameter Θr in graph learning module, Θa in attribute

update module;
1: Random initialize model parameters;
2: l=0;
3: Calculate initial user attribute Xl and Yl (Eq.(3));
4: while not converged do
5: Sample a batch of training data;
6: Update ul and vl (Eq.(1))
7: for k = 0 to K − 1 do
8: Update Ul ,k+1 and Vl ,k+1 (Eq.(7));
9: end for
10: Predict rating preference (Eq.(8))
11: Predict attribute values (Eq.(9))
12: Parameters update according to Eq. (13);
13: Update the approximated attributes Xl+1 and Yl+1 (Eq.

(10));
14: l=l+1;
15: end while
16: Return Θ.

choose a typical Amazon-Video Games dataset, and select the at-
tributes that appear in top 25%. After that, we have three attributes:
price, platform and theme. For simplicity, we only consider binary
attributes in this paper. In data pre-processing step, we split the
price attribute into 10 intervals, and the price of each video game
falls into one of the ten intervals. Therefore, the price attribute
inference is a single-label classification problem. For the platform
and the theme attributes, each video game could be played in mul-
tiple platforms, such as “Xbox”, “PS4” and “PC’. The video game
may belong to different themes like “Adventure”, “Fitness” and so
on. Thus, the platform and theme attribute prediction problems
can be treated as a multi-label classification problem. During data
pre-processing, we use one-hot encoding to encode the single label
attribute, and use binarization encoding to encode the multi-label
attributes [9].
2) Movielens-1M. Movielens [14] is a classical recommendation
dataset with user attributes. As the original dataset is much denser
than most CF datasets, we only select the ratings that equal 5 as
users’ liked movies to increases the sparsity of user-item behavior
matrix. The dataset contains three user attributes: gender, age, and
occupation. All of three attributes are single-label attributes. During
data pre-processing, we encode all these single-label attributes with
one-hot encoding.
3) Movielens-20M. This dataset contains 20 million rating records
of movies that users watched, as well as item attributes. We treat
items that are rated by users as positive feedbacks. Each item be-
longs to several genres, such as action, sci-fi, and so on. Therefore,
the genre attribute is a multi-label attribute, and we encode them
with binarization encoding.

For all datasets, we filter out users that have less than 5 rating
records. After data pre-processing, we randomly split historical
interactions into training, validation, and test parts with the ratio
of 8:1:1. For each type of attribute, we randomly delete the attribute

values at the rate of α . Since the original datasets contain all the
attribute values, we empirically set α = 0.9 and randomly delete
90% attribute values. Therefore, the 90% deleted attribute values are
used for test. Table 1 summarizes the statistics of the three datasets
after pre-processing.

5.1.2 Parameter Settings. For all latent embedding based models,
we initialize the embedding matrices with a Gaussian distribution
with the mean value of 0 and the standard variance of 0.01. For these
gradient descent-based methods, we use Adam as the optimizing
method with an initial learning rate of 0.001 and a batch size of 1024
during model learning. We stop the model learning process when
the performance decreases in the validation data. In our proposed
AGCN model, we set embedding size D in [16,32,64,128] and find
D = 32 reaches the best performance. We set the regularization
parameter λ in [0.1,0.01,0.001,0.0001], and find λ = 0.01 reaches
the best performance. Similar to many graph-based recommenda-
tion models [21, 47], we set the depth parameter K in [0,1,2,3,4],
and would analyze its impact in the experiments. Since we have
the rating based loss, at each iteration of the training process, for
each observed user-item interaction, we randomly select one unob-
served item as candidate negative sample to compose a triple data.
Therefore, the candidate negative samples change in each iteration
and give weak signal for model learning. There are several other
parameters in the baselines, we tune all these parameters to ensure
the best performance of the baselines for fair comparison.

5.2 Performance on Item Recommendation
5.2.1 Baselines and EvaluationMetrics. We compare ourAGCN model
with following state-of-the-art baselines for item recommendation:

• BPR [37]: It is a competing latent factor model for implicit
feedback based recommendation. It designed a ranking based
loss function that assumes users prefer items they observed
compared to unobserved ones.

• FM[35]: This model is a unified latent factor based model
that leverages the user and item attributes. Since FM needs
the complete user (item) attributes, we complete the missing
attribute values with the best attribute inference model in
practice.

• NGCF [42]: It is a state-of-the-art graph based collaborative
filtering model. NGCF iteratively learns user and item repre-
sentations from aggregating neighbors’ embeddings in the
previous layers.

• PinNGCF: We call this model as PinNGCF as it combines
state-of-the-art content based graph model of PinSage [47]
and the collaborative filtering based graph model NGCF [42].
Therefore, PinNGCF is a designed hybrid graph based recom-
mendation model, in which each user (item)’s input layer is
a concatenation of the free embedding vector and the node’s
attribute vector.

• BLA [46]: It is a joint model that combines link prediction
and attribute inference on social graph. It assigns different
weights to edges on the graph, then uses graph construction
to make item recommendation.

For item recommendation task, we focus on recommending top-
N items for each user. We adopt two widely used ranking based

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

684

Table 1: The statistics of the three datasets (“s" means single-label attribute and “m” means multi-label attribute).

Dataset Users Items Ratings Sparsity Attributes

Amazon-Video Games 31,207 33,899 300,003 99.972%
Price(s): 0 ∼ 9

Platform(m): PC, Android, Mac, Linux, Xbox, PS4, Card, Board Games
Theme(m): Advance, Shooting, Home Design, Music, Waltzes, Language, Puzzle

Movielens-1M 6,040 3,952 226,310 99.052%
Gender(s): man, woman

Age(s): under 18, 18∼24, 25∼34, 35∼44, 45∼49, 50∼55, 56+
Occupation(s): educator, artist, student, writer, scientist, doctor, engineer

Movielens-20M 138,493 27,278 20,000,263 99.471% Genres(m): Action, Comedy, Drama, Sci-Fi, Thriller, Adventure, Thriller, War

Table 2: HR@N comparisons for item recommendation with different top-N values.

Models Amazon-Video Games Movielens-1M Movielens-20M
N=10 N=20 N=30 N=40 N=50 N=10 N=20 N=30 N=40 N=50 N=10 N=20 N=30 N=40 N=50

BPR 0.0599 0.0921 0.1163 0.1367 0.1527 0.2076 0.2801 0.3405 0.3874 0.4273 0.2537 0.3008 0.3461 0.3848 0.4188
FM 0.0623 0.0967 0.1208 0.1412 0.1602 0.2151 0.2871 0.3470 0.3956 0.4372 0.2587 0.3082 0.3539 0.3934 0.4271
BLA 0.0657 0.1036 0.1321 0.1553 0.1784 0.2129 0.2866 0.3463 0.3956 0.4380 0.2631 0.3148 0.3612 0.3997 0.4331
NGCF 0.0775 0.1194 0.1529 0.1799 0.2010 0.2211 0.2953 0.3561 0.4071 0.4507 0.2811 0.3353 0.3833 0.4241 0.4586

PinNGCF 0.0797 0.1218 0.1537 0.1785 0.2002 0.2207 0.2935 0.3555 0.4037 0.4448 0.2847 0.3400 0.3900 0.4312 0.4656
AGCN 0.0861 0.1340 0.1683 0.1958 0.2182 0.2261 0.3004 0.3607 0.4125 0.4517 0.2992 0.3520 0.3996 0.4393 0.4732

Table 3: NDCG@N comparison for item recommendation with different top-N values.

Models Amazon-Video Games Movielens-1M Movielens-20M
N=10 N=20 N=30 N=40 N=50 N=10 N=20 N=30 N=40 N=50 N=10 N=20 N=30 N=40 N=50

BPR 0.0318 0.0401 0.0455 0.0496 0.0526 0.1903 0.2166 0.2384 0.2548 0.2680 0.2476 0.2583 0.2718 0.2841 0.2951
FM 0.0333 0.0415 0.0475 0.0516 0.0552 0.1953 0.2211 0.2426 0.2594 0.2730 0.2498 0.2601 0.2760 0.2886 0.2995
BLA 0.0350 0.0448 0.0511 0.0557 0.0601 0.1952 0.2214 0.2430 0.2599 0.2738 0.2556 0.2682 0.2821 0.2943 0.3051
NGCF 0.0414 0.0523 0.0596 0.0651 0.0690 0.2006 0.2275 0.2493 0.2668 0.2811 0.2692 0.2830 0.2976 0.3106 0.3218

PinNGCF 0.0431 0.0540 0.0610 0.0660 0.0701 0.2014 0.2274 0.2497 0.2664 0.2664 0.2801 0.2906 0.3059 0.3190 0.3302
AGCN 0.0461 0.0585 0.0661 0.0716 0.0758 0.2065 0.2327 0.2544 0.2722 0.2853 0.2903 0.3028 0.3170 0.3295 0.3404

[0,4) [4,8) [8,16) [16,32) [32,)
0.02

0.04

0.06

Num. of Records for Each User (T)

N
D

C
G

@
1
0

BPR

FM

BLA

NGCF

PinNGCF

AGCN

(a) Amazon-Video Games

[16,24) [24,48) [48,96) [96,192) [192,)
0.0

0.15

0.20

0.25

0.30

Num. of Records for Each User (T)

N
D

C
G

@
1
0

BPR

FM

BLA

NGCF

PinNGCF

AGCN

(b) Movielens-1M

[16,24) [24,48) [48,96) [96,192) [192,)
0.10

0.20

0.30

0.40

0.50

Num. of Records for Each User (T)

N
D

C
G

@
1
0

BPR

FM

BLA

NGCF

PinNGCF

AGCN

(c) Movielens-20M

Figure 2: Item recommendation performance under different user group.

metrics: Hit Ratio (HR) [45] and Normalized Discounted Cumula-
tive Gain (NDCG) [45]. Specifically, HR measures the number of
successfully predicted items in the top-N ranking list that the user
likes in the test data. NDCG considers the hit positions of the items
and will give a higher score if the hit items are in the top positions.
In practice, we select all unrated items as negative samples for each
user, and combine them with the positive items the user likes in
the ranking process.

5.2.2 Overall Performance. Table 2 and Table 3 report the overall
item recommendation results with different top-N values on HR@N

and NDCG@N metrics, respectively. We observe that all models
outperform BPR since they either leverage additional data or use
more advanced modeling techniques. Specifically, NGCF is the sole
remaining baseline that only takes the user-item interaction be-
havior as input, and shows huge improvement compared to BPR.
Though most attribute values are incomplete, by filling these miss-
ing values with pre-trained models, the attribute enhanced models
have better performance compared to their counterparts that do not
leverage the attribute data. In other words, FM improves over BPR,
and PinNGCF further improves over NGCF. When comparing the
two attribute enhanced recommendation models, the graph based

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

685

Table 4: Performance comparisons for attribute inference.

Models Amazon-Video Games Movielens-1M Movielens-20M
Price(ACC) Platform(MAP) Theme(MAP) Gender(ACC) Age(ACC) Occupation(ACC) Genres(MAP)

LP 0.1987 0.4545 0.5772 0.7168 0.3463 0.1126 0.5654
GR 0.1488 0.4956 0.6431 0.7211 0.3354 0.1127 0.5795

Semi-GCN 0.1535 0.4968 0.6504 0.7164 0.3473 0.1267 0.5587
BLA 0.1637 0.6064 0.6537 0.7206 0.3561 0.1245 0.5960

AGCN 0.2083 0.7762 0.7294 0.7574 0.3953 0.1477 0.6443

model PinNGCF still outperforms FM. BLA is the only baseline
that jointly predicts the two tasks. As BLA is based on classical
attribute inference and recommendation model, BLA has better
results than BPR and FM with mutual reinforcement learning of the
two tasks. However, BLA does not perform as well as these GCN
based baselines. As such, we could also empirically conclude the
superiority of applying GCNs for recommendation, as GCNs could
inject higher-order graph structure for better user (item) embed-
ding learning. This is also the reason why we use GCN as the base
model for our proposed model.

When comparing our proposed AGCN model with the baselines,
we empirically find AGCN improves over all baselines on three
datasets with different evaluation metrics. The detailed improve-
ment rate varies accross different datasets, but the overall trend is
same. E.g., AGCN improves about 8% and 7% compared to the best
baseline (i.e., PinNGCF) of HR@10 and NDCG@10 on Amazon-
Video Games dataset. Since PinNGCF could be seen as a simplified
version of AGCN without the attribute update and joint modeling
step, the results suggest the superiority of AGCN with attribute
update and joint modeling.

5.2.3 Sparsity Analysis. In this part, we show the item recommen-
dation performance of various models under different data sparsity.
We split all users into 5 groups according to the training records
of this user, and test the NDCG@10 performance of different user
groups. The results are shown in Figure2. As shown in this fig-
ure, the x-axis shows the user group information and the y-axis
denotes the performance. E.g, the user group information with
[8, 16) in the horizontal axis means each user in this group has at
least 8 rating records and less than 16 rating records. Please note
that, the detailed group rating information varies across different
datasets as the three datasets have different sizes, we bin users
into different groups to ensure each group has similar users. As
observed from this figure, the performance of all models increases
with more user records. Specifically, when the user group is very
sparse, graph based models (i.e., NGCF, PinNGCF and AGCF) show
larger improvements compared to the remaining models. On Ama-
zon dataset, FM, NGCF and PinNGCF improve over BPR by about
5.0%, 21.1%, 35.5% and 42.5% on the first group of users, separately.
As user records increase, the improvement rate decreases, but the
trend of the superiority of different models is the same.

5.3 Performance on Attribute Inference
5.3.1 Baselines and Evaluation Metrics. We compare AGCN with
the following state-of-the-art attribute inference baselines:

Table 5: Performance comparisons of different propagation
depth K on three datasets.

Depth Amazon-Video Games Movielens-1M Movielens-20M
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

K=0 0.0636 0.0351 0.2119 0.1946 0.2667 0.2514
K=1 0.0741 0.0394 0.2230 0.2055 0.2876 0.2782
K=2 0.0832 0.0453 0.2261 0.2065 0.2992 0.2903
K=3 0.0861 0.0461 0.2152 0.1921 0.2965 0.2853
K=4 0.0846 0.0456 0.2029 0.1738 0.2725 0.2559

• LP [48]: Label Propagation(LP) is a classical algorithm for
inferring node attributes based on graph structure by prop-
agating each node’s attribute to its neighbors. This model
does not model the correlation of different attributes.

• GR [3]: Graph Regularization (GR) extends classical super-
vised learning algorithm with an additional regularization
term, in order to enforce connected nodes to share similar
attribute values. In practice, the supervised model fill the
missing attribute input with an average of its neighbors, and
adopt a simple linear model as the prediction function.

• Semi-GCN [21]: It is a state-of-the-art graph convolutional
network for semi-supervised classification. Since there are
missing feature values in the input of Semi-GCN, we com-
plete these missing values with the average of neighbors’
values.

• BLA [46]: It is a joint model which combines user links and
user attribute inference on social graph with classical graph
learning models. It assigns different weights to edges on the
graph, then uses label propagation to infer attributes.

For attribute inference task, we use ACCuracy (ACC) [10] to
evaluate the single-label attribute inference performance and use
Mean Average Precision (MAP) [32] to evaluate the multi-label
attribute inference performance. Specifically, ACC describes the
proportion of correctly predicted samples to total samples. MAP
describes the average precision of the inferred attributes, and it
is widely used in multi-label classification tasks [10, 11, 29]. For
both metrics, the larger value means the better performance. We
have to note that due to data limit, we could not perform both user
attribute inference and item attribute inference on each dataset .
Our proposed AGCN is flexible to predict either of them according
to the available data.

5.3.2 Overall Performance. Table 4 shows the performance of our
model comparing to the baselines. Our proposed model shows the
best performance for each attribute inference on different dataset.
For example, our model improves over strongest baseline with 4.8%,

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

686

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.03

0.035

0.04

0.045

0.05

N
D

C
G

@
1

0

γ
0/Lr=0 0.0001 0.001 0.01 0.1 1

0.16

0.17

0.18

0.19

0.2

A
C

C

NDCG@10

ACC

(a) Amazon-Video Games Price

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.03

0.035

0.04

0.045

0.05

N
D

C
G

@
1

0

γ
0/Lr=0 0.0001 0.001 0.01 0.1 1

0.65

0.7

0.75

0.8

M
A

P

NDCG@10

MAP

(b) Amazon-Video Games Platform

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.03

0.035

0.04

0.045

0.05

N
D

C
G

@
1

0

γ
0/Lr=0 0.0001 0.001 0.01 0.1 1

0.65

0.7

0.75

M
A

P

NDCG@10

MAP

(c) Amazon-Video Games Theme

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.17

0.19

0.21

N
D

C
G

@
1
0

γ
0/Lr=0 0.0001 0.001 0.01 0.1 1

0.73

0.74

0.75

0.76

0.77

A
C

C

NDCG@10

ACC

(d) Movielens-1M Gender

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.17

0.19

0.21

N
D

C
G

@
1
0

γ
0/Lr=0 0.0001 0.001 0.01 0.1 1

0.34

0.36

0.38

0.4

A
C

C

NDCG@10

ACC

(e) Movielens-1M Age

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.17

0.19

0.21

N
D

C
G

@
1
0

γ
0/Lr=0 0.0001 0.001 0.01 0.1 1

0.12

0.13

0.14

0.15

0.16

A
C

C

NDCG@10

ACC

(f) Movielens-1M Occupation

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.275

0.28

0.285

0.29

0.295

N
D

C
G

@
10

γ

0/Lr=0 0.0001 0.001 0.01 0.1 1
0.6

0.62

0.64

M
A

P

NDCG@10
MAP

(g) Movielens-20M Genres

Figure 3: NGCD@10 and different attribute inference performance under different γ on three datasets

28.0% and 11.6% on price, platform and theme attributes of Amazon-
Video Games, separately. On Movielens-1M, our model improves
over the strongest baseline with 5.1%, 13.8% and 16.4% on gender,
age and occupation attributes. On Movielens-20M, our model also
improves over strongest baseline with 6.6% on genres attribute.

When comparing the baselines of LP, GR and Semi-GCN that are
designed for attribute inference, we find GR and Semi-GCN show
better performance than LP in most situations, as these models
leverage the related remaining attributes in the modeling process.
There is an exception of the price attribute prediction of Amazon-
Video Games dataset, with LP is the strongest baseline. We guess
a possible reason is that, price is not correlated to other attributes
such as platform and theme, and introducing other attributes would
add noisy information for the remaining baselines. GR and Semi-
GCN show similar performance as both models fill the missing
attribute values with precomputed data. Generally, BLA is the best
baseline by jointly modeling the two tasks. Our proposed model
could further improve BLA as AGCN better models the complex
graph structure for to enhance both tasks.

5.4 Detailed Model Analysis
5.4.1 The Propagation Layer Depth K . Table 5 summarizes the
experimental results of AGCN with different propagation depth K .
We set depth K in the range of {0, 1, 2, 3, 4}, and report the values
of HR@10 and NDCG@10 with various depth K . Specifically, when
K = 0, AGCN does not incorporate any graph structure for model
learning. With the increase of K , the up to K-th higher order graph
structure is leveraged for node representation. As shown in this
table, the performance improves quickly on all datasets, as the first-
order connected neighbors’ information is crucial for alleviating
the data sparsity issue. As K continues to increase, the trend is that
the performance still increases at first, but would drop after a value.
Specifically, our model achieves the best performance with K = 3
on Amazon-Video Games, K = 2 and Movielens-1M and Movielens-
20M. We guess that, Amazon-Video Games has very sparse rating
records with only 0.028% density, so more neighbors aggregation is

better for node embedding learning. However, for Movielens-1M
and Movielens-20M, too many 3-order neighbors would lead over
smoothing on the graph, so the performance decreases compare to
K = 2. WhenK continues increase to 4, AGCN is already overfitting,
and the performance decreases on all datasets. The reason is that,
the graph convolutions can be regraded as feature smoothing in the
graph. When introducing more layers, the representation ability
is over smoothed [26]. In fact, this phenomenon has also been
observed in other GCN based recommendation tasks [42, 45, 47].

5.4.2 Task Balance Weight γ . As shown in Eq.(13), parameter γ
controls the relative weight of the two losses in AGCN, i.e., the
rating loss function and the attribute inference loss. The larger
the γ , the more we rely on the attribute inference loss for joint
task prediction. Specifically, when γ = 0, the attribute inference
loss disappears and we only rely on the preference prediction loss
for prediction. In this part, we would like to show how the task
balance parameter γ influences the performance of the two tasks.
Specifically, as we aim at both item recommendation and attribute
inference, γ = 0 denotes we only use the rating based loss for
item recommendation, and Lr = 0 denotes we only consider the
attribute inference loss for attribute inference. Therefore, the corre-
lations of these two tasks are not well captured, and the two tasks
are modeled independently under such setting. The performance
of the two tasks with different balance parameteres is shown in
Figure 3, with each attribute inference result is shown in the right
y-axis, and the item recommendation performance is displayed in
the left y-axis. As can be observed from each subfigure, the left most
part of x-axis shows the performance without any task correlation
modeling (γ = 0 for item recommendation and Lr = 0 for attribute
inference). As γ increases from 0 to 0.001, the performance of the
two tasks are much better than the results at the leftmost part of
each subfigure, showing the soundness of modeling these two tasks
in a unified framework. Asγ continues to increase, the performance
of the two tasks increases at first, and drops when γ = 0.1 or γ = 1
for most subfigures. Different tasks achieve the best performance

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

687

under different γ . Besides, different kind of attributes also achieve
best performance with different γ . In practice, we choose the best
γ parameter for each task.

6 CONCLUSION
In this paper, we proposed a AGCN model for joint item recommen-
dation and attribute inference in an attributed user-item bipartite
graph with missing attribute values. To tackle the missing attribute
problem, AGCN was designed to iteratively performing two steps:
graph embedding learning with previous learned attribute values,
and attribute update procedure to update the input of graph em-
bedding learning. Therefore, AGCN could adaptively adjusted the
graph learning process by incorporating the given attributes and
the estimated attributes, in order to provide weak supervised signals
to facilitate both tasks. Experimental results on three real-world
datasets clearly showed the effectiveness of our proposed model.

ACKNOWLEDGEMENTS
This work was supported in part by National Key Research and
Development Program of China(Grant No.2017YFB0803301), the
National Natural Science Foundation of China(Grant No.61725203,
61972125, U19A2079, 61722204, 61932009 and 61732008).

REFERENCES
[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2018. N-gcn:

Multi-scale graph convolution for semi-supervised node classification. In UAI.
310.

[2] Deepak Agarwal and Bee-Chung Chen. 2009. Regression-based latent factor
models. In SIGKDD. 19–28.

[3] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
IMLR 7, Nov (2006), 2399–2434.

[4] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In AAAI. In Press.

[5] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong
Yu. 2012. SVDFeature:a toolkit for feature-based collaborative filtering. JMLR 13,
Dec (2012), 3619–3622.

[6] Zhiyong Cheng, Ying Ding, Xiangnan He, Lei Zhu, Xuemeng Song, and Mohan S
Kankanhalli. 2018. Aˆ 3NCF: An Adaptive Aspect Attention Model for Rating
Prediction.. In IJCAI. 3748–3754.

[7] Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan Kankanhalli. 2018. Aspect-
aware latent factor model: Rating prediction with ratings and reviews. In WWW.
639–648.

[8] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In SIGKDD. 257–266.

[9] Jong-bum Choi, Sung-Bum Park, Woo-sung Shim, Young-Ho Moon, Dai-woong
Choi, and Jae-won Yoon. 2013. Method and apparatus for encoding/decoding
image by using adaptive binarization. US Patent 8,526,750.

[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In CVPR. 248–255.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. IJCV
88, 2 (2010), 303–338.

[12] Neil Zhenqiang Gong, Ameet Talwalkar, Lester Mackey, Ling Huang, Eui
Chul Richard Shin, Emil Stefanov, Elaine Runting Shi, and Dawn Song. 2014.
Joint link prediction and attribute inference using a social-attribute network.
TIST 5, 2 (2014), 27.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[14] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. TIIS 5, 4 (2015), 1–19.

[15] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW. 507–
517.

[16] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized
ranking from implicit feedback. In AAAI. 144–150.

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[18] José Miguel Hernández-Lobato, Neil Houlsby, and Zoubin Ghahramani. 2014.
Probabilistic matrix factorization with non-random missing data. In ICML. 1512–
1520.

[19] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[20] Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, and Weixiong Zhang. 2019. Graph
convolutional networks meet Markov random fields: Semi-supervised community
detection in attribute networks. In AAAI, Vol. 33. 152–159.

[21] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[22] Ajith Kodakateri Pudhiyaveetil, Susan Gauch, Hiep Luong, and Josh Eno. 2009.
Conceptual recommender system for CiteSeerX. In RecSys. 241–244.

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[24] Michal Kosinski, David Stillwell, and Thore Graepel. 2013. Private traits and
attributes are predictable from digital records of human behavior. PNAS 110, 15
(2013), 5802–5805.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NIPS. 1097–1105.

[26] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI. 3538–3545.

[27] Shie Mannor, Dori Peleg, and Reuven Rubinstein. 2005. The cross entropy method
for classification. In ICML. 561–568.

[28] Benjamin M Marlin and Richard S Zemel. 2009. Collaborative prediction and
ranking with non-random missing data. In RecSys. 5–12.

[29] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR. 43–52.

[30] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[31] Andriy Mnih and Ruslan R Salakhutdinov. 2008. Probabilistic matrix factorization.
In NIPS. 1257–1264.

[32] Baback Moghaddam and Alex Pentland. 1995. Probabilistic visual learning for
object detection. In ICCV. IEEE, 786–793.

[33] Seung-Taek Park andWei Chu. 2009. Pairwise preference regression for cold-start
recommendation. In RecSys. 21–28.

[34] Damien Poirier, Isabelle Tellier, Françoise Fessant, and Julien Schluth. 2010. To-
wards text-based recommendations. In RIAO. 136–137.

[35] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[36] Steffen Rendle. 2012. Factorization machines with libfm. TIST 3, 3 (2012), 57.
[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[38] Shaoyun Shi, Min Zhang, Xinxing Yu, Yongfeng Zhang, Bin Hao, Yiqun Liu,
and Shaoping Ma. 2019. Adaptive Feature Sampling for Recommendation with
Missing Content Feature Values. In CIKM. 1451–1460.

[39] Peijie Sun, Le Wu, and Meng Wang. 2018. Attentive Recurrent Social Recommen-
dation. In SIGIR. 185–194.

[40] Peijie Sun, Le Wu, Kun Zhang, Yanjie Fu, Richang Hong, and Meng Wang. 2020.
Dual Learning for Explainable Recommendation: Towards Unifying User Prefer-
ence Prediction and Review Generation. InWWW. 837–847.

[41] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph Convolu-
tional Matrix Completion. STAT 1050 (2017), 7.

[42] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[43] Le Wu, Yong Ge, Qi Liu, Enhong Chen, Richang Hong, Junping Du, and Meng
Wang. 2017. Modeling the evolution of usersâĂŹ preferences and social links in
social networking services. TKDE 29, 6 (2017), 1240–1253.

[44] Le Wu, Qi Liu, Enhong Chen, Nicholas Jing Yuan, Guangming Guo, and Xing Xie.
2016. Relevance meets coverage: A unified framework to generate diversified
recommendations. TIST 7, 3 (2016), 1–30.

[45] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang.
2019. A Neural Influence Diffusion Model for Social Recommendation. In SIGIR.
235–244.

[46] Carl Yang, Lin Zhong, Li-Jia Li, and Luo Jie. 2017. Bi-directional joint inference
for user links and attributes on large social graphs. InWWW. 564–573.

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In SIGKDD. 974–983.

[48] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. (2002).

[49] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In ICML. 912–919.

Session 4B: Graph-based Recommendation SIGIR ’20, July 25–30, 2020, Virtual Event, China

688

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Proposed Model
	4.1 Overall Architecture
	4.2 Graph Learning Module
	4.3 Attribute Update Module
	4.4 Model Optimization

	5 EXPERIMENTS
	5.1 Experimental Settings
	5.2 Performance on Item Recommendation
	5.3 Performance on Attribute Inference
	5.4 Detailed Model Analysis

	6 CONCLUSION
	References

