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Abstract
Graph-based social recommender systems have demonstrated great

potential in alleviating data sparsity by leveraging high-order user

influence embedded in social networks. However, most existing

methods rely heavily on the observed social graph, which is often

noisy and includes spurious or task-irrelevant connections that

can mislead user preference learning. Identifying and removing

these noisy relations is crucial but challenging due to the lack of

ground-truth annotations. In this paper, we approach the social

denoising problem from the perspective of graph invariant learn-

ing and propose a novel approach, Social Graph Invariant Learn-
ing(SGIL). Specifically, SGIL aims to uncover stable user preferences

within the input social graph, thereby enhancing the robustness of
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graph-based social recommendation systems. To achieve this goal,

SGIL first simulates multiple noisy social environments through

graph generators. It then seeks to learn environment-invariant user

preferences byminimizing invariant risk across these environments.

To further promote diversity in the generated social environments,

we employ an adversarial training strategy to simulate more po-

tential social noisy distributions. Extensive experimental results

demonstrate the effectiveness of the proposed SGIL. The code is
available at https://github.com/yimutianyang/SIGIR2025-SGIL.
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1 Introduction
With the proliferation of social platforms, social recommendation

has emerged as a pivotal technique for delivering personalized sug-

gestions to users, harnessing both user-item interaction data and

user-user social relationships [29]. The underlying premise is that

users who are socially connected are more likely to exhibit similar

preference patterns [26]. Consequently, much of the prior research

has focused on how to effectively leverage the potential of social

networks to enhance the learning of user preferences [17, 21]. Early

work in this domain predominantly relied on first-order social con-

nections to improve recommendation quality. For instance, user

preferences were enhanced through social regularization [13] or

by incorporating trust relationships into user preference factor-

ization [8]. These methods paved the way for more sophisticated

integration of social data.

In recent years, graph-based social recommendation methods

have gained prominence due to their remarkable success in im-

proving recommendation accuracy, particularly in addressing the

challenge of data sparsity within user behaviors [9, 12, 36]. By lever-

aging the powerful representational capabilities of Graph Neural

Networks (GNNs), these methods encode user preferences while

simultaneously capturing higher-order social influences and col-

laborative signals [35, 36]. This has made graph-based approaches

a compelling choice for incorporating social information into rec-

ommendation systems, enabling them to better model the complex

relationships between users and their social networks.

However, despite the apparent benefits of aggregating all avail-

able information from social networks, many graph-based social

recommendation methods fail to account for the inevitable noise

inherent in these networks. Social networks are often fraught with

task-irrelevant relationships that may obscure or distort the true

preferences of users. Previous works [15, 27, 42] have empirically

and statistically demonstrated the pervasiveness of social noise.

For example, [15] defines the concept of preference-aware social

homophily ratio and observes that social networks typically exhibit

low homophily, meaning that social connections do not always

align with user preferences. Furthermore, [42] investigates the di-

rect use of original social networks in graph-based recommenders,

revealing that such approaches result in only incremental improve-

ments, or in some cases, a decline in performance. This highlights

the importance of addressing the noise present in social data for

effective recommendation learning.

Nevertheless, the task of identifying and eliminating these noisy

social relations remains a substantial challenge. Current approaches

typically follow a two-step paradigm: 1) filtering the social structure

based on user preference signals, and 2) optimizing this filtering pro-

cess using specific learning objectives, such as co-optimization [24,

27], contrastive learning [15], and graph bottleneck learning [42].

Although these methods have made notable strides in denoising

social data, they are inherently limited by the lack of reliable mech-

anisms to identify and verify noise, as there are no ground truth

labels available to assess the accuracy of the filtered relationships.

This uncertainty raises an important question: Given the diffi-
culty in exhaustively removing noisy social connections, can
we still learn stable and sufficient user preferences, even in the
presence of noisy environments?

To achieve this goal, we adopt the principle of invariant learning

to address the social noise issue. Invariant learning [1, 18] posits

that the input data contains both invariant features (stable) and

spurious features (variable across different environments). The fo-

cus of invariant learning is to identify and utilize only the invariant

features, thereby enhancing the model’s robustness. As illustrated

in Figure 1, we compare existing filtering-based social denoising

methods with our proposed invariance-based approach. Drawing

inspiration from this principle, we hypothesize that a task-relevant

structure exists within the social graph that is both sufficient and

invariant for recommendation tasks. Although this invariant struc-

ture is not directly accessible, we propose narrowing the bounds of

invariance by exploring diverse noisy environments. Specifically,

for a given input social graph, we first simulate multiple social

environments (which embody different types of noise), and then

optimize the learning objectives to encourage invariance across

these environments. This formulation presents two key challenges:

i) How can we simulate diverse noisy environments based on the

input social networks and interactions? ii) How can we achieve

invariant user preference learning across different noisy environ-

ments?

In this work, we propose a novel Social Graph Invariant Learn-
ing(SGIL) , to tackle the above challenges. First, we design preference-
guided environment generators that simulate multiple noisy en-

vironments, thereby approximating real-world scenarios where

social noise is prevalent. Next, we capture invariant user prefer-

ences by leveraging an invariance-based regularizer. Specifically,

we derive the optimization objective for each environment, taking

into account the characteristics of the recommendation task, and

incorporate an invariance penalty term to enforce the stability of

user preferences across environments. To further ensure the diver-

sity of the simulated noisy environments, we employ an adversarial

training strategy. This strategy challenges the model iteratively,

forcing it to perform well in progressively more difficult and varied

environments, which ultimately improves its generalization ability.

The main contributions of this work are summarized as follows:

• We propose a novel social denoising approach SGIL for robust

recommendation from the standpoint of invariant learning. Un-

like traditional methods that attempt to remove noisy data di-

rectly, SGIL focuses on learning invariant user preferences across
diverse environments, ensuring robustness despite noise.

• We derive an optimization objective tailored to each social envi-

ronment and design an invariance-based optimization to learn

stable user preferences. Additionally, we incorporate an adversar-

ial training strategy to guarantee the diversity of the generated

environments, further enhancing the model’s robustness.

• We conduct extensive experiments on three benchmark datasets.

Empirical studies, including both real and semi-synthetic datasets,

demonstrate the effectiveness of the proposed SGIL method in

improving social recommendation performance and robustness.

2 Related Works
2.1 Graph-based Social Recommendation
Social recommendations have been widely deployed in online ser-

vices, which leverage social networks as auxiliary information to
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Figure 1: Illustration of the existing filtering-based social denoising methods and our proposed invariance-based method.
Instead of filtering the noisy part of the input social graph, we encourage learning the invariant yet sufficient user preferences
across environments.

capture users’ behavior patterns [25, 29]. Following the social ho-

mophily [26] and social influence theory [25], social recommenda-

tions are devoted to characterizing social relation effects on user

preferences, including trust-based preference learning [8], social

regularization [13, 23], and social influence modeling [36]. Early

works mainly exploit shallow social relations to enhance recommen-

dation, ignoring the complex high-order social structure influences.

Users’ interactions can be naturally formulated in graph forms [9,

44], many graph-based social recommendations have been pro-

posed [36, 43, 45]. Particularly, graph-based social recommenda-

tions achieved an impressive process by borrowing the power of

representation ability of GNNs.The core premise of this work is

that incorporating high-order social neighbors and interacted items

into user preference learning enriches the available information,

thereby addressing the issue of data sparsity. Current studies mainly

focus on modeling social structure in Euclidean space [35, 45],

few attempts also explore the potential of Hyperbolic space learn-

ing [30, 43]. However, despite the effectiveness of social graph

modeling, current research often overlooks the challenge of social

noise. Despite the effectiveness of social graph modeling, current

studies rarely notice the social noise problem. Directly using the

observed social graph may lead to sub-optimal results. In this work,

we propose a novel social denoising method to alleviate the effect

of task-irrelevant social structures in recommendations.

2.2 Recommendation Denoising
Recommender systems are usually built on clean label assumption,

but it’s hard to guarantee in real-world datasets. Therefore, recom-

mendation denoising methods are designed to collaborative filter-

ing [10, 32, 41], multimodal recommendation [11, 22, 40], and social

recommendation [15, 24, 42] scenarios. Specifically, researchers

design social denoising methods to reduce the effect of redundant

social structures [15, 27, 42, 46]. Among these, ESRF leverages the

adversarial training technique to generate potential social relations

and filter unstable part [46]. GDSMR [27] proposes a distilled so-

cial graph based on progressive preference-guided social denoising.

ShaRe [15] designs a social graph rewriting method with social-

enhanced contrastive learning optimization. GBSR [42] introduces

the information bottleneck principle to guide the social denoising

process, which can preserve the minimal yet sufficient social struc-

ture. In summary, current solutions aim to filter out the noisy part

of social networks, but identifying the noisy part is challenging due

to a lack of labels. Instead of removing the noise part directly, we

focus on learning stable user preferences across diverse environ-

ments (which are full of various noise). If the model can survive

in various noisy environments, it indeed captures the invariant

social structure for recommendation tasks. Thus, we introduce the

invariant learning principle to tackle the social noise problem.

2.3 Invariant Learning and Applications
Invariant learning has emerged as a promising approach to address

the challenges posed by Out-Of-Distribution (OOD) generalization

in machine learning [1, 5, 18, 48]. The core idea behind invariant

learning is to uncover stable feature representations that remain

robust under varying environmental conditions, thereby enhancing

the reliability of label prediction models. This framework is based

on the assumption that the data contains both spurious and invari-

ant features, where spurious features vary unpredictably across

different environments, while invariant features remain stable and

consistent. The primary objective of invariant learning methods is

to optimize models using Invariant Risk Minimization (IRM) by in-

troducing an invariance-based penalty during optimization, which

discourages reliance on spurious features and encourages the model

to learn stable, generalizable patterns. Invariant learning has been

successfully applied across a wide range of machine learning tasks,

including image classification [1, 5], graph learning [4, 19, 38], and

recommender systems [2, 6, 31, 33, 49]. Especially for recommender

systems, [2, 6] learn invariant multimedia representation to improve

the robustness of the general and cold-start recommendation sce-

narios. Besides, [33, 49] leverage the invariant learning to address

popularity debiasing, and [31] captures the invariant KG subgraph

to enhance recommendations. In this work, we introduce the in-

variant learning principle to the social recommendation, intending

to capture stable user preferences that persist across diverse social

environments.
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3 Preliminary
3.1 Graph-based Social Recommendation
In the fundamental social recommender, there are two kinds of

entities: a userset 𝑈 (|𝑈 | = 𝑀) and an itemset 𝑉 (|𝑉 | = 𝑁 ). Users

present two kinds of behaviors, user-user social behaviors (e.g.,

follow, favor, group) and user-item interaction behaviors (e.g., click,

view, purchase). We use the matrix S ∈ R𝑀×𝑀
to describe the user-

user social relation matrix, where each element s𝑎𝑏 = 1 if user 𝑏

has social behavior with user 𝑎, otherwise s𝑎𝑏 = 0. Meanwhile, we

use the matrix R ∈ R𝑀×𝑁
to describe the user-item interaction

behaviors, where each element r𝑎𝑖 = 1 if user 𝑎 interacted with item

𝑖 . Given the userset 𝑈 , itemset 𝑉 , user-user social relations S and
user-item interactions R, we construct the user-item interaction

graph G𝑟 = {𝑈 ∪𝑉 , E𝑟 = {(𝑎, 𝑖) |r𝑎𝑖 = 1}} and the user-user social

graph G𝑠 = {𝑈 , E𝑠 = {(𝑎, 𝑏) |s𝑎𝑏 = 1}}. Graph-based social recom-

mendation aims to infer the unknown preference of user 𝑎 to item

𝑖: 𝑟𝑎𝑖 = 𝑓𝜙 (𝑎, 𝑖,G𝑟 ,G𝑠 )), where 𝑓𝜙 denotes the GNN formulation

with parameters 𝜙 . The traditional learning paradigm focuses on

Empirical Risk Minimzation (ERM):

𝑀𝑖𝑛 : E(𝑎,𝑖,r𝑎𝑖 )∼PL(𝑟𝑎𝑖 ; 𝑓𝜙 (𝑎, 𝑖,G𝑟 ,G𝑠 )), (1)

where P denotes the distribution of training data. However, the ob-

served social networks are inevitably noisy with task-irrelevant re-

lations, and directly using them will lead to sub-optimal results [15,

42]. Therefore, tackling the social noise issue is an urgent need to

enhance recommendations.

3.2 Graph Invariant Learning
Invariant learning is the classic branch of Out-Of-Distribution (OOD)

generalization methods, tackling the spurious correlations in ma-

chine learning tasks [1, 5, 18]. Graph invariant learning focuses on

Graph OOD generalization, targeting the pursuit of invariant sub-

graph across diverse noisy environments [4, 19, 37, 39]. Typically,

graph invariant learning methods have the following assumption:

Assumption 1. Given the input graph G, there exists a subgraph
G𝐼 ∈ G satisfy the invariance assumption: (1) Sufficiency condition:
𝑦 = 𝑓 (G𝐼 )+𝜖 , where𝑦 is the prediction target and 𝜖 is an independent
noise. (2) Invariance condition: for any two environments 𝑒, 𝑒′ ∈ E,
𝑝 (𝑦 |G𝐼 , 𝑒) = 𝑝 (𝑦 |G𝐼 , 𝑒′), where E denotes all potential environments.

This assumption means that the invariant subgraph involves

sufficient information from the input graph, which can build a

robust prediction model for unknown distributions. To achieve this

goal, an Invariant Risk Minimization (IRM) based optimization has

been proposed [1, 18], which is defined as follows:

𝑀𝑖𝑛 : E𝑒∈EL𝑒 + 𝛽𝑉𝑎𝑟 ({L𝑒 , 𝑒 ∈ E}), (2)

where the first term focuses on the empirical risk minimization

in each environment (sufficiency condition), and the second term

encourages the invariant risk minimization (invariance condition).

The parameter 𝛽 is set to find the trade-off between sufficiency

and invariance. Inspired by graph invariant learning, we propose

a novel Social Graph Invariant Learning(SGIL) approach to tackle

the social noise issue. Imaging that there exists an invariant social

subgraph for recommendation, while other redundant relations

construct various noisy environments. Following the invariance

assumption, can we learn the invariant social subgraph to facilitate

the recommendation task? Let’s begin with the technical details.

4 Methodology
As illustrated in Figure 2, we present the overall framework of our

proposed Social Graph Invariant Learning(SGIL) approach. Essen-
tially, SGIL aims to learn stable yet sufficient user preferences across

diverse social environments. To achieve this goal, SGIL elaborates

two modules: Environment Simulation, and Invariant Preference

Learning. Specifically, the environment simulation module aims to

generate multiple social environments, and the invariant preference

learning module targets to achieve the invariant user preference

across environments. Next, we introduce each module in detail.

4.1 Environment Simulation
Given the user-user social graphG𝑠 and user-item interaction graph

G𝑠 as input, we first simulate diverse noisy environments. Here, we

define K social environments E = {𝑒𝑘 : 1 ≤ 𝑘 ≤ 𝐾}. Consequently,
we define K independent environment generators {𝑔𝑘

𝜃
}𝐾
𝑘=1

with

parameters {𝜃1, 𝜃2, ..., 𝜃𝐾 }. We take 𝑘𝑡ℎ social environment as an

example to illustrate how to construct it. Formally, constructing

𝑘𝑡ℎ social environment equals extracting 𝑘𝑡ℎ social subgraph G𝑘𝑠 ,
each edge (𝑎, 𝑏) will be preserved with a probability 𝜌𝑎𝑏 . Thus, we

have the extracted subgraph structure S𝑘 :

S𝑘 = 𝑔𝑘
𝜃
(𝑈 ,G𝑟 ,G𝑠 ) = {s𝑎𝑏 ⊙ 𝜌𝑘

𝑎𝑏
}, (3)

where 𝜌𝑘
𝑎𝑏

∼ 𝐵𝑒𝑟𝑛(𝑤𝑘
𝑎𝑏
) + 𝜖 denotes that each edge < 𝑢𝑎, 𝑢𝑏 > will

be dropped with the probability 1 −𝑤𝑘
𝑎𝑏

+ 𝜖 .
Following the previous work [42], we also add the bias term

𝜖 = 0.5 to guarantee that the confidences of observed social rela-

tions are higher than those non-observed. Following the previous

studies [42], we feed users’ collaborative singles into parameter

𝑤𝑘
𝑎𝑏

calculation. Let E𝑈 ∈ R𝑀×𝑑
and E𝐼 ∈ R𝑁×𝑑

denote user

and item preference representations, which learned from the input

data {G𝑟 ,G𝑠 }. We parameterize the distribution parameter𝑤𝑘
𝑎𝑏

as

follows:

𝑤𝑘
𝑎𝑏

= (𝑔𝑘
𝜃
(e𝑎, e𝑏 )), (4)

where e𝑎 and e𝑏 denote user 𝑎′𝑠 and user 𝑏′𝑠 preference represen-
tations, respectively. Besides, we implement the generator 𝑔𝑘

𝜃
(·)

through two-layer MLPs with parameters 𝜃𝑘 . After the above learn-

ing process, we can obtain 𝑘𝑡ℎ social subgraph S𝑘 . However, the
discrete Bernoulli distribution is not differentiable. Gumbel-Softmax

operation is the popular solution to relax the learning process:

𝐵𝑒𝑟𝑛(𝑤𝑎𝑏 ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑙𝑜𝑔(𝛿/(1 − 𝛿) +𝑤𝑎𝑏 )/𝑡), (5)

where 𝛿 ∼ 𝑈 (0, 1), and 𝑡 ∈ R+
is the temperature parameter (we

set t=0.2 in our experiments).

After the re-parameterization operation, the discrete Bernoulli

distribution is transferred to a differentiable function. Repeating 𝐾

times subgraph extraction {S1, S2, ..., S𝐾 }, we can simulate 𝐾 social

environments {G1

𝑠 ,G2

𝑠 , ...,G𝐾𝑠 } .
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Figure 2: Overview of our proposed SGIL framework, consists of two elaborated modules. (1) Environment Simulation: aiming
to generate multiple social environments; (2) Invariant Preference Learning: targeting to achieve the invariant user preference
across environments.

4.2 Invariant Preference Learning
Given the simulated social environments, SGIL then learns the

invariant preference across diverse environments. The invariant

learning module consists of three components: graph-based prefer-

ence learning, empirical risk minimization, and overall optimization

with invariance.

4.2.1 Graph-based Preference Learning. Due to the advanced repre-
sentation ability of GNNs, here we use GNNs as encoders to capture

users’ preferences. Specifically, we employ LightGCN-S [9, 42] as

the encoder to obtain user preference embeddings. We first formu-

late the user-item interactions and the user-user social relations

in 𝑘𝑡ℎ environment as a heterogeneous graph G𝑘 = {𝑈 ∪𝑉 ,A𝑘 },
where𝑈 ∪𝑉 denotes the set of nodes, and A𝑘 is the adjacent matrix

defined as follows:

A𝑘 =

[
Sk R
R𝑇 0𝑁×𝑁

]
. (6)

Let P0 ∈ R𝑀×𝑑
and Q0

denote the initialized user and item embed-

dings, where 𝑑 is the embedding dimension. Then, we iteratively

update node embeddings through graph convolutions:[
P𝑙+1

Q𝑙+1

]
= D

− 1

2

𝑘
A𝑘D

− 1

2

𝑘
×
[

P𝑙

Q𝑙

]
, (7)

where D𝑘 is the degree matrix of graph G𝑘 . When stacking 𝐿 graph

convolution layers, we have the final node embeddings through

the avg-pooling operation:

P =
1

𝐿 + 1

𝐿∑︁
𝑙=0

P𝑙 ,Q =
1

𝐿 + 1

𝐿∑︁
𝑙=0

Q𝑙 . (8)

After obtaining the learned node representations in the 𝑘𝑡ℎ social

environment, we can infer the propensity that user 𝑎 will interacts

with item 𝑖 by an inner product: 𝑟𝑎𝑖 =< 𝑝
𝑘
𝑎 , 𝑞

𝑘
𝑖
>. All the above pro-

cess are summarized as 𝑟𝑘
𝑎𝑖

= 𝑓 𝑘
𝜙
(𝑎, 𝑖,G𝑟 ,G𝑘𝑠 ), where 𝜙 = {P0,Q0}

denote the initialized embedding parameters.

4.2.2 Empirical Risk Minimization. Following the above use prefer-
ence learning procedure, we obtain K predictions across all environ-

ments. Next, we implement the sufficiency condition in Assumption

1. Given the predictions in 𝑘𝑡ℎ environment, the empirical risk loss

is defined as follows:

L𝑘𝑟𝑒𝑐 =
∑︁

𝑎∈𝑈 ,𝑖∈𝑉
L(𝜎 (𝑓 𝑘

𝜙
(𝑎, 𝑖,G𝑟 ,G𝑘𝑠 )), r𝑎𝑖 ). (9)

Although this point-wise loss satisfies the sufficiency condition,

in practice, we find that it’s hard to guarantee the invariance con-

dition. The reason is that the user’s interaction behaviors are not

IID data [3], directly aligning the user’s preference to a specific

item under various environments can not guarantee invariant user

preference. In other words, we must align each user preference

distribution across all environments. Therefore, we rewrite the

empirical risk loss as:

L𝑘𝑟𝑒𝑐 =
∑︁
𝑎∈𝑈

L(𝜎 (𝑓 𝑘
𝜙
(𝑎,𝑉 ,G𝑟 ,G𝑘𝑠 )),R𝑎) . (10)

Next, we introduce how to optimize the above loss function. Let

𝑉𝑎 ( |𝑉𝑎 | = 𝑑𝑎) denote each user 𝑎′𝑠 interacted items, then we have

the prior information: 𝑝 (𝑟 = 1) = 𝑑𝑎
𝑁

and 𝑝 (𝑟 = 0) = 𝑁−𝑑𝑎
𝑁

. Next,

we analyze the interaction probability as follows:

𝑝 (𝑟 = 1|𝑎, 𝑖) = 𝑝 (𝑟 = 1)𝑝 (𝑎, 𝑖 |𝑟 = 1)∑
𝑟 ∈{0,1} 𝑝 (𝑟 )𝑝 (𝑎, 𝑖 |𝑟 )

=

𝑑𝑎
𝑁
𝑝 (𝑎, 𝑖 |𝑟 = 1)

𝑑𝑎
𝑁
𝑝 (𝑎, 𝑖 |𝑟 = 1) + 𝑁−𝑑𝑎

𝑁
𝑝 (𝑎, 𝑖 |𝑟 = 0)

=
𝑝 (𝑎, 𝑖 |𝑟 = 1)

𝑝 (𝑎, 𝑖 |𝑟 = 1) + 𝑁−𝑑𝑎
𝑑𝑎

𝑝 (𝑎, 𝑖 |𝑟 = 0)

=
𝑝 (𝑎, 𝑖 |𝑟 = 1)

𝑝 (𝑎, 𝑖 |𝑟 = 1) +𝐶𝑝 (𝑎, 𝑖 |𝑟 = 0) ,

(11)

where𝐶 =
𝑁−𝑑𝑎
𝑑𝑎

is the negative sample ratio. In 𝑘𝑡ℎ social environ-

ment, we infer the probability 𝑝 (𝑟 = 1|𝑎, 𝑖) = 𝛿 (𝑓 𝑘
𝜙
(𝑎, 𝑖,G𝑟 ,G𝑘𝑠 )),
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where 𝛿 (·) is the sigmoid function. For the sake of clarity, we use

𝑓 𝑘
𝜙
(𝑎, 𝑖) to replace 𝑓 𝑘

𝜙
(𝑎, 𝑖,G𝑟 ,G𝑘𝑠 )), then we define the density ratio

as:

𝑝 (𝑎, 𝑖 |𝑟 = 1)
𝑝 (𝑎, 𝑖 |𝑟 = 0) = 𝐶

𝑝 (𝑟 = 1|𝑎, 𝑖)
1 − 𝑝 (𝑟 = 1|𝑎, 𝑖) = 𝐶𝑒𝑥𝑝 (𝑓 𝑘

𝜙
(𝑎, 𝑖)) . (12)

In practice, directly optimizing the scores of full items is consum-

ing, so we employ the popular batch training strategy. Previous

works demonstrate that the more negative samples, the better the

conditional probability estimation 𝑝 (𝑟 = 1|𝑎, 𝑖). For batch training

data with I𝑏 items, supposing there are one positive sample (𝑎, 𝑖)
and |I𝑏 | − 1 negative samples (𝑎, 𝑗) in the training data, the goal is

to maximize the following probability:

𝑃 =
𝑝 (𝑎, 𝑖 |𝑟 = 1)∏𝑗 !=𝑖, 𝑗∈I𝑏 𝑝 (𝑎, 𝑗 |𝑟 = 0)∑

𝑖∈I𝑏 𝑝 (𝑎, 𝑗 |𝑟 = 1)∏𝑤!=𝑗,𝑤∈I𝑏 𝑝 (𝑎,𝑤 |𝑟 = 0)

=
𝑝 (𝑎, 𝑖 |𝑟 = 1)/𝑝 (𝑎, 𝑖 |𝑟 = 0)∑

𝑗∈I𝑏 𝑝 (𝑎, 𝑗 |𝑟 = 1)/𝑝 (𝑎, 𝑗 |𝑟 = 0)

=

𝑒𝑥𝑝 (𝑓 𝑘
𝜙
(𝑎, 𝑖))∑

𝑗∈I𝑏 𝑒𝑥𝑝 (𝑓
𝑘
𝜙
(𝑎, 𝑗))

.

(13)

We use the popular scaled cosine similarity [34] to implement

𝑓 𝑘
𝜙
(𝑎, 𝑖), thus we can obtain the final optimization objective of ERM

in each environment:

L𝑘𝑟𝑒𝑐 = − 1

|D|
∑︁

(𝑎,𝑖 ) ∈D

𝑒𝑥𝑝 (< 𝑝𝑘𝑎 , 𝑞𝑖 > /𝜏)∑
𝑗∈I𝑏 𝑒𝑥𝑝 (< 𝑝

𝑘
𝑎 , 𝑞

𝑘
𝑗
> /𝜏)

. (14)

4.2.3 Overall Optimization with Invariance. Given the above op-

timization objective of ERM in each social environment, we then

combine the sufficiency condition and invariance condition for opti-

mization. Specifically, we achieve the overall optimization objective

with a variance-based regularizer:

𝑀𝑖𝑛 :

1

𝐾

𝐾∑︁
𝑘=1

L𝑘𝑟𝑒𝑐 + 𝛽𝑉𝑎𝑟 ({L𝑘𝑟𝑒𝑐 : 1 ≤ 𝑘 ≤ 𝐾}), (15)

where the first term focuses on the empirical risk minimization in

each social environment (sufficiency condition), and the second

term encourages the invariant risk minimization (invariance condi-

tion), and 𝛽 is the trade-off parameter. To enhance the robustness of

SGIL in more diverse noisy environments, we further conduct the

environment exploration based on an adversarial training strategy.

Specifically, we iteratively optimize the following two objectives:

𝜙∗, 𝜃∗ = argmin

𝜙,𝜃

1

𝐾

𝐾∑︁
𝑘=1

L𝑘𝑟𝑒𝑐 + 𝛽𝑉𝑎𝑟 ({L𝑘𝑟𝑒𝑐 : 1 ≤ 𝑘 ≤ 𝐾}) (16)

𝜃∗ = argmax

𝜃

𝑉𝑎𝑟 ({L𝑘𝑟𝑒𝑐 : 1 ≤ 𝑘 ≤ 𝐾}) . (17)

Considering the instability of adversarial training, we select a cross-

batch training strategy. We will conduct the exploration process

every𝑇 batch. After cross-environment optimization, we can obtain

a stable user preference for the recommendation. In the inference

stage, we first compute the mean representations of users and items

Algorithm 1: The algorithm of SGIL

1: Input: Userset𝑈 , Itemset 𝑉 , user-item interactions R,
user-user social relations S, the number of social environments

𝐾 , and observation bias 𝜖 ;

2: Output: Optimal graph-based social recommender G∗
𝜃,𝜙

(·),
where 𝜃 denote MLPs used in environment generators and

𝜙 = {P0,Q0} denote embedding matrices;

3: while not converged do
4: Sample a batch training data D;

5: # Environment Simulation #
6: Compute the edge drop probability (Eq. (4));

7: Obtain edge drop distribution by Gumbel-Softmax ( Eq.(5));

8: Extract 𝐾 social subgraphs (Eq. (3));

9: # Invariant Preference Learning #
10: Learn user preference in each environment (Eq.(6)-Eq.(8));

11: Obtain ERM loss in each environment (Eq.(14));

12: Obtain overall loss across all environments (Eq.(15));

13: # Adversarial Training #
14: Update model parameters 𝜃, 𝜙 according to invariance based

loss minimization (Eq.(16));

15: Update environment generator parameters 𝜃 according to

invariance loss maximization (Eq.(17)))

16: end while
17: return the optimal G∗

𝜃,𝜙
(·)

across 𝐾 social environments:

U =
1

𝐾

𝐾∑︁
𝑘=1

P𝑘 ,V =
1

𝐾

𝐾∑︁
𝑘=1

Q𝑘 . (18)

Then, we infer the interaction score based on the inner product:

𝑟𝑎𝑖 =< u𝑎, v𝑖 >. We summarize the learning process of SGIL as

Algorithm 1.

4.3 Model Discussion
In this section, we analyze the proposed SGIL from both space and

time complexity.

4.3.1 Space Complexity. As illustrated in Algorithm 1, the parame-

ters of SGIL consist of two components: the embedding parameters

𝜙 and the environment generator parameters 𝜃 . The embedding

parameters 𝜙 ∈ R(𝑀+𝑁 )×𝑑
are the same as those used in general so-

cial recommenders (such as DiffNet[36] and GBSR [42]). In addition,

the environment generator parameters 𝜃 consist of 𝐾 individual

MLPs (R2𝑑×𝑑 + R𝑑×1). Since the embedding size 𝑑 is much smaller

than node number𝑀 + 𝑁 , the additional parameters introduced by

SGIL is negligible.

4.3.2 Time Complexity. The computational overhead introduced

by SGIL mainly consists of three components: environment simu-

lation, invariant preference learning, and adversarial training. For

environment simulation, we first obtain the encoded node repre-

sentations using GCNs, and then employ 𝐾 individual MLPs to

generate diverse environments. For preference learning, we learn

user and item representations within each environment and opti-

mize them through an invariance-based objective. Finally, we adopt
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an across-batch adversarial training strategy to iteratively update

the parameters. Compared to the backbone model (LightGCN-S),

SGIL incurs approximately 𝐾 times the computational cost dur-

ing the preference learning stage, and the employed softmax-base

loss[34] is computationally more intensive than the traditional BPR

loss [28]. Fortunately, in our experiments, the optimal value of

𝐾 is typically less than 5, and SGIL converges much faster than

LightGCN-S. Overall, the total training time of SGIL is approxi-

mately 1 to 3 times that of LightGCN-S.

Table 1: The statistics of three datasets.

Dataset Douban-Book Yelp Epinions

Users 13,024 19,593 18,202

Items 22,347 21,266 47,449

Interactions 792,062 450,884 298,173

Social Relations 169,150 864,157 381,559

Interaction Density 0.048% 0.034% 0.035%

Relation Density 0.268% 0.206% 0.115%

5 Experiments
5.1 Experimental Settings
5.1.1 Datasets. Following [42], we select three public social recom-

mendation datasets to conduct our empirical studies: Douban-Book,

Yelp, and Epinions. Each dataset includes user-user social links and

user-item interactions. For our experiments, we randomly sam-

ple 80% of the interactions as training data, with the remaining

20% reserved as test data. The detailed statistics of all datasets are

summarized in Table 1.

5.1.2 Baselines and Evaluation Metrics. We compare SGIL with

state-of-the-art methods. The baselines can be divided into two

groups: 1) Graph-based social recommendations: GraphRec [7],

DiffNet++ [35], SocialLGN [20], LightGCN-S [9]; 2) Social graph

denoising methods: ESRF [46], GDMSR [27], SEPT [47], ShaRe [15],

GBSR [42], which are list as follows:

• LightGCN [9]: is the SOTA graph-based collaborative filtering

method, which simplifies GCNs by removing the redundant fea-

ture transformation and non-linear activation components for

ID-based recommendation.

• LightGCN-S [9, 42]: extends LightGCN to graph-based social

recommendation, that each user’s neighbors include their inter-

acted items and linked social users.

• GraphRec [7]: is a classic graph-based social recommendation

method, it incorporates user opinions and user two kinds of

graphs for preference learning.

• DiffNet++ [35]: is the SOTA graph-based social recommendation

method, it recursively formulates user interest propagation and

social influence diffusion process with a hierarchical attention

mechanism.

• SocialLGN [20]: propagates user representations on both user-

item interactions graph and user-user social graph with light

graph convolutional layers, and fuses them for recommendation.

• ESRF [46]: generates alternative social neighbors and further

performs neighbor denoising with adversarial training.

• GDMSR [27]: designs the robust preference-guided social de-

noising to enhance graph-based social recommendation, it only

remains the informative social relations according to preference

confidences.

• SEPT [47]: is the SOTA self-supervised social recommendation

method, it incorporates social relations to contrastive learning.

• SHaRe [15]: challenges the low social homophily and proposes

a social graph rewriting strategy with relation-based contrastive

learning enhancement.

• GBSR [42]: devises a model-agnostic social denoising method,

which leverages the information bottleneck principle to remove

the redundant social structure for recommendation tasks.

The evaluation metrics are Recall@N and NDCG@N [14], which

have been widely used in ranking-based recommender systems.

Following the mainstream evaluation process [50], we adopt a full-

ranking protocol that all non-interacted items are candidates for

evaluation.

5.1.3 Implementation Details. All embedding-based methods are

initialized by a normal initializer with a mean value of 0 and a stan-

dard variance of 0.01, the embedding size is fixed to 64. For model

optimization, we use the Adam optimizer [16] with a learning rate

of 0.001 and a batch size of 2048. We empirically set the GCN layer

𝐿 = 3 and the temperature coefficient 𝜏 = 0.2 for all datasets. For

the edge observation bias, we follow the previous work [42] and

set the bias 𝜖 = 0.5 for all datasets. For the environment number 𝐾 ,

the variance-based penalty coefficient 𝛽 , we carefully search the

best parameters for each dataset and report the detailed compar-

isons. For the adversarial training step, we set 𝑇 = 20 on both the

Douban-Book and Yelp datasets, and𝑇 = 3 on the Epinions datasets.

For all baselines, we refer to the original parameters and carefully

fine-tune them for fair comparisons.

5.2 Performance Comparisons
Following the current SOTA method [42], we implement all social

denoising methods on the LightGCN-S backbone. As shown in

Table 2, we have the following observations:

• Compared to LightGCN, graph-based social recommenda-
tionmethods showmodest improvements onmost datasets.
For instance, DiffNet++ achieves a 2.24% gain in NDCG@20 on

the Yelp dataset. However, this is not universally observed; all

graph-based social recommendation methods experience perfor-

mance degradation on the Douban-Book dataset. These results

highlight an important observation: while social graphs pro-

vide additional information, graph-based social recommendation

methods do not consistently outperform LightGCN in terms of

performance. This suggests that directly incorporating social

graphs may sometimes hinder recommendation performance,

emphasizing the need to eliminate redundant social relations to

improve outcomes.

• Social denoising methods outperform traditional graph-
basedmethods.Compared to the backbonemodel (LightGCN-S),

we observe that social denoising methods achieve stable improve-

ments across all three datasets. Whether leveraging adversarial

training (ESRF), preference-guided graph filtering (GDMSR), self-

supervised signals (SEPT and SHaRe), or the graph information
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Table 2: Overall performance comparisons on three benchmarks (p-value < 0.05). The best performance is highlighted in bold
and the second is highlighted by underlines.

Douban-Book Yelp Epinions

Models

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

LightGCN 0.1039 0.1195 0.1526 0.1283 0.0698 0.0507 0.1081 0.0623 0.0432 0.0314 0.0675 0.0385

GraphRec 0.0971 0.1145 0.1453 0.1237 0.0672 0.0485 0.1077 0.0607 0.0436 0.0315 0.0681 0.0387

DiffNet++ 0.1010 0.1184 0.1489 0.1270 0.0707 0.0516 0.1114 0.0640 0.0468 0.0329 0.0727 0.0406

SocialLGN 0.1034 0.1182 0.1527 0.1274 0.0681 0.0507 0.1059 0.0620 0.0416 0.0307 0.0634 0.0371

LightGCN-S 0.1021 0.1187 0.1506 0.1281 0.0714 0.0529 0.1126 0.0651 0.0477 0.0347 0.0716 0.0417

ESRF 0.1042 0.1199 0.1534 0.1301 0.0718 0.0526 0.1123 0.0645 0.0462 0.0329 0.0727 0.0406

GDMSR 0.1026 0.1001 0.1538 0.1245 0.0739 0.0535 0.1148 0.0658 0.0461 0.0326 0.0721 0.0414

SEPT 0.1094 0.1300 0.1592 0.1382 0.0749 0.0553 0.1176 0.0682 0.0457 0.0341 0.0724 0.0416

SHaRe 0.1050 0.1243 0.1544 01325 0.0724 0.0534 0.1138 0.0658 0.0490 0.0354 0.0771 0.0438

GBSR 0.1189 0.1451 0.1694 0.1523 0.0805 0.0592 0.1243 0.0724 0.0529 0.0385 0.0793 0.0464

SGIL 0.1303 0.1567 0.1809 0.1627 0.0872 0.0654 0.1323 0.0787 0.0565 0.0409 0.0844 0.0489
Impro. 9.59% 7.99% 6.79% 6.83% 8.93% 8.32% 6.44% 8.70% 6.81% 6.23% 6.43% 5.39%

bottleneck principle (GBSR), these methods demonstrate remark-

able performance enhancements. Notably, GBSR stands out as the

strongest baseline among them, effectively preserving the mini-

mal yet sufficient social structure necessary for recommendation

tasks. By eliminating redundant information while retaining valu-

able social connections, GBSR effectively mitigates the impact

of social noise, thereby enhancing recommendation accuracy. In

summary, learning a denoised social graph significantly boosts

the effectiveness of social recommendation, underscoring the

critical role of social denoising in practical applications.

• Our proposed SGIL consistently outperforms all baselines
by a substantial margin. Specifically, SGIL improves upon the

strongest baseline (GBSR) to NDCG@10 by 7.99%, 10.47%, and

5.97% gains on the Douban-Book, Yelp, and Epinions datasets,

respectively. These experimental results strongly validate the su-

periority of our proposed SGILmodel. Compared to the backbone

model (LightGCN-S), SGIL achieves significant improvements of

approximately 32.01%, 23.63%, and 17.58% in terms of NDCG@20

across three benchmark datasets. Experimental results verify the

effectiveness of our proposed SGIL . Compared to traditional

graph-based social recommendation methods, SGIL effectively

alleviates the adverse effects of social noise and enhances recom-

mendation performance. Compared to current social denoising

methods, SGIL simulates diverse social noise environments and

learns invariant user preferences, providing stronger guarantees

under various potential noise scenarios. This innovative approach

not only improves the robustness of the recommendation system

but also offers a novel solution for complex social recommenda-

tion contexts, ensuring stability and reliability when faced with

social noise.

5.3 Ablation Study
To further analyze the effect of each component of the proposed

SGIL , we conduct ablation studies on three datasets. As shown in

Table 3, we compare SGIL with three corresponding variants: SGIL-
w/o EG denotes that without the environment generator, then

environment-inspired invariant learning disappears and SGIL de-

generates to the backbone model (LightGCN-S+ERM). SGIL-w/o

(a) Douban-Book (b) Yelp

Figure 3: Recommendation performance (NDCG@20) under
different degrees of noise.

IL denotes that without the invariant learning regularizer, we only

adopt the mean representations of all environments for inference.

SGIL-w/o EE denotes that without environment exploration, we

only perform graph invariant learning on the initialized environ-

ments. From Table 3, we have the following observations. First,

SGIL-w/o EG exhibits the most performance degeneration, which

indicates the importance of environment simulation. Environment

simulation is the basis of SGIL , as the task-irrelevant relations

are unknown, so SGIL simulates diverse environments and encour-

ages preference consistency across environments to alleviate the

effect of potential noise. Second, SGIL-w/o IL also performs sig-

nificant degradation, which demonstrates the effectiveness of the

invariance-based regularizer. Finally, SGIL-w/o EE shows a con-

sistent performance drop. Because social noise is not directly per-

ceived, we use an adversarial training strategy to encourage more

diverse environments. The more diverse the environments the bet-

ter the robustness of the proposed method. All ablation results

demonstrate the effectiveness of each technical component of our

proposed SGIL .

5.4 Detailed Analysis of SGIL
In this section, we further analyze SGIL from the following aspects:

robustness to different scale noises, sparsity analysis, and parameter

sensitivities.

5.4.1 A-Robustness to different noises. To evaluate the robustness

under different degrees of noise, we conduct experiments on the
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Table 3: Ablation study of SGIL on three datasets.

Douban-Book Yelp Epinions

Models

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

SGIL-w/o EG 0.1243 0.1445 0.1672 0.1495 0.0795 0.0591 0.1201 0.0713 0.0475 0.0348 0.0708 0.0417

SGIL-w/o IL 0.1272 0.1503 0.1748 0.1562 0.0813 0.0612 0.1229 0.0735 0.0499 0.0361 0.0749 0.0436

SGIL-w/o EE 0.1292 0.1562 0.1804 0.1626 0.0850 0.0643 0.1290 0.0773 0.0556 0.0410 0.0825 0.0487

SGIL 0.1303 0.1567 0.1809 0.1627 0.0872 0.0654 0.1323 0.0787 0.0565 0.0409 0.0844 0.0489
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Figure 4: Recommendation performance (NDCG@20) across
different sparsity users.

semi-synthetic datasets, in which we inject different proportions

of fake social relations into the original social graph. As illustrated

in Figure 3, we exhibit the recommendation performances under

different degrees of noise, where the horizontal axis 𝜎 represents

the injection fake relation ratio, the vertical axes denote NDCG@20

and relative improvements compared with the backbone model. We

can find that with the increase in noise degree, all models show a

performance decrease. However, social denoising methods perform

higher improvements than the backbone model when the noise

degree increases. This verifies that social denoising methods have

better robustness for highly noisy environments. Furthermore, our

proposed SGIL consistently shows significant improvements with

various settings, especially improving the backbone model about

28% gains when the noise ratio 𝜎 = 2.0. Empowering the ability of

graph invariant learning, SGIL can extract invariant social structure

for robust preference learning.

5.4.2 B-Sparsity Analysis. Here, we investigate how the proposed

SGIL performs for different sparsity users. As depicted in Figure 4,

we report recommendation performances of SGIL and other social

denoising methods on different sparsity user groups. Specifically,

we divide all users into ’Low, Medium, High’ three groups based

on their historical interaction records. Then, we evaluate all meth-

ods across different groups. From Figure 4, we observe that with

the increase in interaction density, each model shows significant

performance improvements. Compared with the backbone model,

our proposed SGIL consistently presents better performances in

all settings. Especially, SGIL performs higher improvements on the

sparser scenarios, because their long-tail users are more dependent

on social relations, our proposed SGIL provides more stable user

preferences in the noisy environment.

5.4.3 C-Parameter Sensitivities. We next analyze the influence of

two core parameters in SGIL : the environment number 𝐾 and the

invariance penalty coefficient 𝛽 . We search these two parameters

carefully and report the performances with different parameters
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Figure 5: Impact of the number of environments 𝐾 and in-
variance coefficient 𝛽 .

on three datasets. The parameter 𝐾 controls the exploration range

and the coefficient 𝛽 determines the weight of the invariance con-

straint. As shown in Figure 5, we search 𝐾 ∈ {1, 2, 3, 4, 5} and

𝛽 ∈ {0, 0.05, 0.10, 0.15, 0.20}. In which, 𝐾 = 1 denotes that we

only perform a single environment generator, then the invariance

constraint disappears. Besides, 𝛽 = 0 also denotes the invariance

constraint disappears, the difference compared with 𝐾 = 0 is the

number of environments is not the same. We can observe that

SGIL achieves the optimal results when (𝐾 = 4, 𝛽 = 0.15) on the

Douban-Book dataset, (𝐾 = 4, 𝛽 = 0.05) on the Yelp dataset, and

(𝐾 = 4, 𝛽 = 0.10) on the Epinions dataset.

6 Conclusion
In this paper, we investigate social denoising recommendations

from a novel invariant learning perspective. Technically, we propose

a novel Social Graph Invariant Learning(SGIL) approach, aiming

to learn the invariant user preference across diverse noisy envi-

ronments. To achieve this goal, we first simulate multiple social

environments based on user preferences guidance, and then learn

invariant user preferences from invariance-based optimization. Par-

ticularly, we derive the empirical risk minimization objective in

each environment when considering the characterization of recom-

mendation tasks. Furthermore, SGIL fully explores diverse environ-

ments with an adversarial training strategy. This strategy allows the

model to adapt to a wide range of challenging conditions, thereby

improving its generalization and robustness. Extensive experiments

on three benchmarks verify the effectiveness of the proposed SGIL .
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