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Abstract

Personalized learner modeling uses learners’ historical behavior
data to diagnose their cognitive abilities, a process known as Cog-
nitive Diagnosis (CD). This is essential for web-based learning
services such as learning resource recommendation and adaptive
testing. However, prior studies have shown that CD models may
unfairly correlate learners’ abilities with sensitive attributes (e.g.,
gender, region), leading to biased outcomes. While existing ap-
proaches mitigate this issue by decorrelating sensitive attributes
from the modeling process, privacy concerns make collecting such
attributes impractical. Furthermore, the presence of multiple sensi-
tive attributes complicates fairness improvements. In this paper, we
explore how to achieve fair personalized learner modeling without
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relying on any sensitive attribute input. We introduce a novel fair-
ness objective tailored for personalized learner modeling and design
amax-min strategy to facilitate both sensitive information inference
and fair CD modeling. In the max step, we infer pseudo-labels by
maximizing the fairness objective, while in the min step, we retrain
the CD model by minimizing it. Additionally, we provide a theoret-
ical guarantee that our framework reduces the upper bound of fair-
ness generalization error. Extensive experiments demonstrate that
the proposed framework significantly outperforms existing meth-
ods. Our code is available at: https://github.com/HeFei-X/FairWISA.

CCS Concepts
« Computing methodologies — Machine learning; « Informa-
tion systems — Users and interactive retrieval.

Keywords
Fairness; User Modeling; Cognitive Diagnosis; Debiasing; Out-of-
distribution

ACM Reference Format:

Hefei Xu, Min Hou, Le Wu, Fei Liu, Yonghui Yang, Haoyue Bai, Richang
Hong, and Meng Wang. 2025. Fair Personalized Learner Modeling Without
Sensitive Attributes. In Proceedings of the ACM Web Conference 2025 (WWW
'25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3696410.3714787


https://orcid.org/0000-0001-7975-6844
https://orcid.org/0000-0002-0524-6806
https://orcid.org/0000-0003-4556-0581
https://orcid.org/0000-0003-0022-4103
https://orcid.org/0000-0002-7601-6004
https://orcid.org/0009-0009-1328-9230
https://orcid.org/0000-0001-5461-3986
https://orcid.org/0000-0001-7780-630X
https://doi.org/10.1145/3696410.3714787
https://doi.org/10.1145/3696410.3714787
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696410.3714787&domain=pdf&date_stamp=2025-04-22

WWW ’25, April 28—May 2, 2025, Sydney, NSW, Australia.

1 Introduction

In recent years, online learning platforms such as Coursera' and
ASSISTments? have rapidly emerged, offering personalized web
learning services [1, 57, 69] like exercise recommendations [23, 32]
and adaptive testing [53]. In these services, personalized learner
modeling [27] plays a crucial role, focusing on capturing learners’
cognitive states through their online behavioral data. Among the
various techniques employed in personalized learner modeling,
Cognitive Diagnosis (CD) [35, 50, 52, 56] has gained widespread
adoption. Through comprehensive modeling of learners, CD pro-
vides diagnostic feedback to both platforms and learners, enabling
informed decisions about learning paths and performance improve-
ments in personalized web learning services.

In recent research endeavors, improving the accuracy of CD
models has been the central theme [3, 10, 11, 22, 26, 50, 58]. Despite
considerable progress in accuracy, it has been reported that exist-
ing CD models unconsciously introduce unfairness [66, 67]. Here,
unfairness refers to situations where models show prejudice or
favoritism toward particular learner groups based on their sensitive
attributes (e.g., gender, region). This unfairness typically manifests
as CD models widening the proficiency gap between different learner
groups. Fig. 1 (a) illustrates the existence of unfairness in three
popular CD models on PISA3 dataset. Specifically, we compare the
predicted proficiency levels of learners from OECD and non-OECD
countries?. It can be observed that these CD models consistently
amplify the proficiency gap between OECD and non-OECD learn-
ers, with the predicted correct rate gap exceeding the actual correct
rate gap between these groups. This occurs because learner records
inherently correlate with sensitive attributes. When optimizing
for accuracy, CD models may unintentionally learn these correla-
tions, resulting in unfair predictions [4, 16, 47]. Fairness is crucial
to ensure equitable treatment and prevent discrimination against
specific learner groups [38, 45, 60]. Therefore, developing fair CD
models is of paramount importance.

Algorithmic fairness has gained significant attention in recent
research, with most existing methods relying on specific sensi-
tive attribute labels [4, 9, 37, 64]. However, the CD task presents
some special challenges. First, obtaining learners’ sensitive attributes
is often impractical. Privacy concerns and legal restrictions (such
as the GDPR® in the European Union and FERPA® in the USA)
strictly regulate the collection and processing of students’ personal
data [36, 48]. Second, numerous hidden attributes in online learning
may lead to unfairness. Unfortunately, most existing research only
addresses unfairness caused by a single known attribute, failing
to cover all types of unfairness in CD. We find that multiple sensi-
tive attributes can exacerbate unfairness, so we need a method to
eliminate the impact caused by all of them. As shown in Fig. 1(b),

!https://www.coursera.org/

Zhttps://new.assistments.org/

3PISA dataset is an international education dataset that is widely used in research on
intelligent education and is described in detail in Appendix C.1.

4OECD and ESCS are universally acknowledged as sensitive attributes in educational
research and assessment in PISA. Details are provided in Appendix C.1.

5The General Data Protection Regulation, a comprehensive data protection law enacted
by the European Union in 2018. For more information, visit https://gdpr.eu/.

The Family Educational Rights and Privacy Act, a federal law on the protection
of learner privacy enacted in the United States in 1974. For more information, visit
https://www2.ed.gov/policy/gen/guid/fpco/ferpa/.
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Figure 1: Unfairness in CD. Average Correct Rate is the aver-
age percentage of correct answers within each group. Bolding
numbers denote the average correct rate gaps between groups.
IRT [22], MIRT [2], and NCDM [49] are currently popular
CD models, respectively. OECD and ESCS* are two sensitive
attributes.

the gap in predicted correct rates between OECD learners from
advantaged families (ESCS>0) and non-OECD learners from disad-
vantaged families (ESCS<0) is further amplified, compared to the
single-attribute scenario in Fig. 1(a). The two unique characteristics
mentioned above prompt us to develop an advanced fair CD model
that doesn’t rely on sensitive attributes.

In this paper, we investigate the challenging yet practical research
task of improving the fairness of CD models without relying on sensi-
tive attributes. The absence of labeled sensitive attributes creates sig-
nificant obstacles to achieving fair CD modeling: (1) Lack of Fairness
Supervision Signals. Without the labeled sensitive attributes, guid-
ing the model towards fairness is difficult. Some methods attempt
to infer these labels using limited sensitive information [14, 66] or
associated non-sensitive features [68], but acquiring such substi-
tutes introduces new challenges. (2) Multiple Potentially Sensitive
Attributes. Fair CD emphasizes equitable performance across all sen-
sitive groups. Consequently, methods optimizing only for specific
groups are unsuitable for this task [8, 25]. (3) Theoretical Guaran-
tee. Establishing a theoretical guarantee for fair learner modeling
becomes problematic when using data with unavailable sensitive
attributes. (4) Framework Compatibility. A general fair framework
is needed to mitigate unfairness for existing CD models.

To bridge these gaps, we propose a model-agnostic fair CD frame-
work that does not rely on any sensitive attribute information,
named Fair cognitive diagnosis WIthout Sensitive Attributes (Fair-
WISA). Specifically, we design a novel fairness objective function
for measuring unfairness levels in CD modeling. Then, we propose
a max-min training game for both sensitive attribute inference and
unfairness mitigation. More concretely, we propose a pseudo-label
inference method based on maximizing the designed fairness objec-
tive. These inferred pseudo-labels are used as proxies for sensitive
information in fair CD modeling. Given the pseudo-labels, we re-
train a fair CD model by minimizing the designed fairness objective
across every group. Our proposed optimization method ensures
fairness across all sensitive attributes, not just specific ones. We
also provide a theoretical guarantee that the implementation of
FairWISA is equivalent to reducing the upper bound of the error op-
timization function for fairness generalization. In the experiments,
we evaluate our proposed framework under both real-world and
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out-of-distribution settings, with the latter presenting more chal-
lenging conditions for CD tasks. Extensive experimental results on
these two settings clearly show the effectiveness of the framework.

2 Related Works and Preliminaries

2.1 Cognitive Diagnosis

Cognitive diagnosis [3, 26] focuses on assessing learners’ profi-
ciency levels based on historical learner-exercise interaction logs,
which are important for intelligent education and web learning [20].
Let U={uy,uz, ..., un } and E={ey, ey, ..., epr} be the sets of learners
and exercises, respectively. The learner-exercise interaction set is
denoted as R = {(u, e, yye)|u € U, e € E,yye € {0,1}}, where yye
indicates whether u answers exercise e correctly. Specifically, if u
answers e correctly, then y, = 1; otherwise, y,e = 0. The inputs
to the CD model consist of the learner-exercise interaction records
R. The CD model analyzes these records to assess the learner’s
mastery of each exercise, thereby inferring the learner’s overall
proficiency level. Generally, the CD model contains two steps: 1) the
embedding layers to obtain the diagnostic factors of learners and
exercises, 2) the interaction layer to learn the interaction function
f(-) among the factors and output the probability g, of learner u
correctly answering exercise e.

gue = f(hu, he)s (1)

where hy, is the proficiency vector of u and h, is the exercise vector.
Both the embedding layer architecture and interaction function
can be flexibly designed. Many CD methods [2, 12, 19, 22, 49, 50]
have been proposed to model learners’ abilities more accurately.
For example, Item Response Theory (IRT) [2, 22] models learners’
abilities using one-dimensional vectors and employs a logit function
to depict the interactions between learners and exercises. NCDM
[49, 50] employs multidimensional vectors to represent learners,
with each dimension reflecting the student’s mastery of specific
knowledge, and utilizes a neural network to capture the complex
interactions between students and exercises.

When training the CD model, for each record in the response
logs set R, the loss function L¢p is calculated as the cross-entropy
loss between the predicted value g, and the true label yy:

2

(w.e,yue) ER

Lep=- (Yue 10g Gue + (1= Yue) log(1 = Jue)).  (2)

After training, the CD model obtains learners’ proficiency levels.

However, most existing work focuses only on improving the
accuracy of cognitive diagnosis, ignoring the fairness issues that
exist in the modeling process. Recently, some scholars have begun to
focus on studying fair cognitive diagnosis [66, 67]. Our work differs
from these previous studies by specifically focusing on a more
challenging scenario in which we do not have access to sensitive
labels or use them as supervisory signals.

2.2 Fairness in Cognitive Diagnosis

Fairness aims to ensure that models do not exhibit bias or discrim-
ination when processing data from users with different sensitive
attributes[33] such as gender and ethnicity. Existing studies on
fairness can generally be divided into two categories [5]: individual
fairness [15, 16] and group fairness [40, 43, 67]. Individual fairness
stipulates that similar individuals should be treated similarly, while

4614

WWW °25, April 28—-May 2, 2025, Sydney, NSW, Australia.

group fairness focuses on ensuring equitable outcomes across dif-
ferent sensitive groups. Group fairness has garnered more research
attention due to its clearer definitions and measurements. For ex-
ample, Demographic Parity (DP) [16] requires that different groups
have equal correct rates. However, it is limited because the base
correct rates of subgroups may differ. Equal Opportunity (EO) [21]
emphasizes the need for true positive rates (TPR) across different
groups. It ensures that people with equivalent abilities have equal
opportunities to achieve positive outcomes, regardless of their sen-
sitive attributes. Recent developments in cognitive diagnosis have
introduced new perspectives on fairness, emphasizing that cogni-
tive diagnostic models should operate independently of learners’
sensitive attributes [66, 67]. These studies propose specific criteria
for fairness in CD models. Zhang et al. [67] argue that fair CD
models should not change the original correct rate gaps between
sensitive groups. Zhang et al. [66] focus on the fairness of learners’
representations in CD, asserting that a fair CD model should learn
learner representations that do not encode sensitive attribute in-
formation. Building on these insights, this paper focuses on group
fairness in cognitive diagnosis.

2.3 Fairness-Aware Models

In tackling fairness concerns, many studies [6, 7, 18, 41, 44, 62, 63]
have been proposed to confront the bias inherent in historical
data. These works largely address the issue of fairness in machine
learning and can generally be categorized into three types: pre-
processing methods [9, 65], in-processing methods [6, 54, 55], and
post-processing methods [21, 42]. Pre-processing methods typically
alleviate bias in data by correcting labels [65], modifying sensitive
attributes [17], and generating balanced samples [9]. Most studies
assume that sensitive attributes are fully available. However, in
reality, learner privacy protection and technical constraints often
make these attributes unavailable. Recently, researchers have fo-
cused on improving fairness without access to sensitive attributes.
To address this challenge, some studies [14, 66] use optimal dis-
criminators to predict these attributes. Other studies [8, 25, 61, 68]
enhance task-specific fairness without sensitive attributes. Lahoti
et al. [25] proposed adversarial reweighting learning to achieve
Rawlsian maximum-minimum fairness. Zhao et al. [68] achieved
fairness by minimizing the correlations between predictions and
non-sensitive features that are similar to sensitive features. Chai
et al. [8] used knowledge distillation to achieve fairness without
sensitive attributes by modifying training data labels to soft labels,
which is equivalent to weighting the special sample.

Some other fairness-aware methods [51] related to our work
focus on improving model generalization when group information
is unknown. For example, [39] and [29] propose methods that learn
to weight samples, assigning higher weights to complex samples to
improve robustness. Creager et al. [13] inferred environment labels
by maximally violating the Environment Invariance Constraint,
and then use the inferred labels for invariant learning to get causal
representations. [30] and [59] obtain environment labels by clus-
tering samples and then co-optimise with the invariant learning
task to enhance generalization. These efforts aim to enhance the
model’s performance beyond its original distribution and are not
specifically designed to address fairness bias.
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Figure 2: The framework of FairWISA.

3 The Proposed FairWISA Framework

3.1 Overview

The core of FairWISA is a max-min training game for both sensitive
group inference and unfairness mitigation. We begin by designing
a fairness objective to quantify the unfairness in CD models. Based
on this objective, FairWISA first maximizes the degree of unfairness
to infer pseudo-labels for learners’ group membership. Then, it
minimizes the gaps between different groups to achieve fair CD
modeling. As illustrated in Fig. 2, FairWISA comprises three main
procedures:

1) Pre-training a basic CD Model: This initial step involves
developing an unfair CD model by maximizing accuracy. As previ-
ously noted, this accuracy-centric approach inherently introduces
bias. The basic CD model can be selected from various established
models such as IRT [22], MIRT [2], or NCDM [49], which are de-
tailed in Appendix A.

2) Sensitive Group Inference: This phase involves grouping
learners by fixing the parameters of the model from Step 1) and
then maximizing the degree of unfairness to derive pseudo-sensitive
labels for each learner. This approach is effective because the pre-
trained model from Step 1) exhibits differential treatment towards
groups with distinct sensitive attributes. Therefore, significant per-
formance disparities between groups indicate differing sensitive
attributes. We leverage this characteristic to infer pseudo-labels as
proxies for learners’ sensitive attributes.

3) Training the Fair CD Model: In this final step, we utilize the
pseudo-labels obtained from Step 2) as fairness supervision signals
to guide the training of CD. To achieve a balance between accuracy
and fairness in the CD model, we employ a regularized optimization
approach that simultaneously addresses both objectives.

In the subsequent sections, we first formulate the fairness ob-
jective and then introduce our sensitive group inference method.
Following this, we provide a detailed description of the FairWISA
training process and present a theoretical analysis of its plausibility.

3.2 Fairness Objective Ly,

Previous fairness objectives, such as EO [21] and Fcp [67], are
based on predicted outcomes, which can be significantly influenced
by classification thresholds. Therefore, we propose a threshold-
free fairness optimization objective based on predicted values. This
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Figure 3: CD model’s predicted value distributions of differ-
ent sensitive groups. The left panel shows the distribution of
the CD model’s predicted value 7 for records with incorrect-
ness (y = 0), and the right for correctness (y = 1). The model
consistently predicts higher values for the OECD group.

objective is motivated by the key observation: there is a correlation
between the CD model’s predicted values and learners’ sensitive
attributes.
Observation. We counted the predicted values of the CD model
for both OECD and non-OECD learners in the PISA dataset and
plotted the distribution of these predicted values as shown in Fig. 3.
As can be seen from the figure, the distribution of predicted values
for OECD learners (blue area) is consistently to the right of the
distribution of predicted values for non-OECD learners (yellow
area), despite both groups having the same answer results. Specifi-
cally, the distribution of predicted values for OECD learners trends
closer to 1, while the distribution for non-OECD learners trends
closer to 0. This suggests that the CD model consistently outputs
larger predicted values for OECD learners, regardless of whether
the answers are actually incorrect (Fig. 3(a)) or correct (Fig. 3(b)).
Based on the observation presented above, we argue that the dis-
crepancies in the model’s predicted values across different learners
result in unfair diagnoses. To address this, we design a novel fairness
objective named L¢;,., which regularizes the model-predicted val-
ues Gy across different groups. Ly, ensures that the CD model
outputs similar predicted values for learners with similar profi-
ciency levels, regardless of sensitive attributes.

Liair =Var(R, .. R),) + Var(Ry,, ... Rg,), (3)
1
0o _ _* ~
Rg,— “ No Z Yue> (4)
gl UEYGi, Yue=0
1
1 _ N
Ry =No Jues ®)
9i uegi,yue=1

where Var(-) denotes the variance calculation operator, Rgi and R;i
are calculated by Eq. (4) and Eq. (5), respectively. k is the number of
sensitive attribute groups, N, £ (N, glg) is the number of records with
incorrect (correct) responses in the group g;. Ly, brings closer
the average values of the model’s outputs across different sensitive
groups when the true label is 0 or 1, respectively For Eq (4), when
Var(Rgl, el ng) = 0, indicating Rgl = Rgz = ng, it can be
inferred that the CD model treats different groups comparably and
is therefore fair. The same analysis applies to Eq. (5). Therefore, a
larger L4, indicates greater unfairness with values ranging from
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0 to 1. It is worth noting that although L4, is proposed for CD, it
can still be applied to other classification tasks.

Compared to some previous fairness metrics (e.g., DP [16], EO
[21]), Lfqir has several advantages as a fairness optimization ob-
jective: (1) Previous metrics required discretizing predicted values,
a process that is generally non-differentiable for optimization and
may be affected by classification threshold (e.g., whether § > 0.5
or j > 0.6 is regarded as a correct answer may yield significant
differences). In contrast, L4, is based on original predicted values
and thus does not suffer significantly from such interference. (2)
Considering that in CD tasks, both correct and incorrect answers
reflect the proficiency level of the learner, Ly, focuses on both
types of answers (as shown in Eq. (4) and Eq. (5)), which is not ad-
dressed by other existing fairness metrics. This suggests that L;,
is better adapted to the two-sided fairness of answering correctly
or incorrectly, whereas other metrics only consider the one-sided.
Therefore, Ly, is more suitable for fair CD modeling.

3.3 Sensitive Group Inference
CD models perform unfairly when processing samples from differ-
ent sensitive demographic groups, as evidenced by previous studies
[66, 67]. Leveraging this characteristic, we have devised a novel
grouping method based on unfairness maximization. The rationale
behind this approach is as follows: Pre-trained CD models tend to
evaluate learners similarly within sensitive attribute groups, but
differently across these groups. This leads to assessment discrep-
ancies between different sensitive groups. Larger discrepancies
indicate higher levels of model unfairness. It is worth noting that
our proposed Ly, serves as an effective proxy for measuring
this discrepancy. When we fix the model parameters and group
learners, a larger assessment gap between two groups suggests a
greater dissimilarity in the sensitive attributes of learners within
these groups. Based on this idea, we achieve learner grouping by
maximizing the degree of unfairness (as quantified by the L¢;,).
To implement this idea, we introduce a grouping matrix ‘W €
RN*K to record the group information of all learners, where N is
the number of learners and k is a hyperparameter representing the
number of groups. Each row of W contains the learner’s group
probabilities that sum to 1:

Wi+ W+ ...+ Wuk =1, (6)

where W,,4 denotes the probability that learner u belongs to group
g. Then, the group label of u is determined by the column in row u
of W where the maximum value is located. Specifically, the group
label of u is given by:

™

argmax Wyg.
4

Initially, the elements in W are randomly initialized, meaning
learners’ groups are assigned randomly. Then, to assign learners
with similar sensitive attributes to the same group as much as
possible, we make maximizing Ly,;, as the supervisory signal,

thereby updating ‘W, i.e.,
®

arg H(l‘il/x Lfair~

Given the pseudo group label g;, we can feed it to Eq. (4) and Eq. (5)
to calculate Ly, After training, the group labels of each learner
can be obtained from W.
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As described above, frequent operations of selecting the maxi-
mum value are required to obtain the group labels for the learners
during during the training of “W. However, the operation of select-
ing the maximum value is non-differentiable. Therefore, we employ
the Gumbel-Softmax [24] function to handle this issue, ensuring
that training gradients can be propagated. Gumbel-Softmax [24]
is a technique used in deep learning for handling discrete choices.
The process is formulated as:

exp ( log('VI{;,g)+gb )

Sy exp )

where ‘W,,; denote the probability that the learner u belongs to
group g, Wlig denotes the converted output, gb is a sample from the
Gumbel distribution, and 7 is the temperature parameter controlling
the level of smoothing. This approach enables the training of neural
networks by making the discrete selection process differentiable.

Wy = )

(log("Wugz)+gb
T

3.4 Training Process

FairWISA executes the following three steps. 1) Firstly, we pre-train
an unfair basic CD model Fy by Eq. (2). Note that the choice of basic
model is arbitrary. 2) Then, the sensitive group inference module is
executed to get sensitive group labels. Specifically, we first initialize
the grouping matrix ‘W randomly. Subsequently, keeping the pa-
rameters of the pre-trained CD model #y fixed, we maximize L,
to infer sensitive group labels. After training, an optimized grouping
matrix ‘W is obtained, which can be used to get the pseudo-labels
of the learners. 3) Finally, the fair CD model is trained using the
pseudo-labels obtained from the well-learned ‘W. Specifically, we
fix the ‘W obtained in the previous step and optimize a new CD
model by minimizing L4, which incorporates Lg,;, as a reg-
ularization term. This optimization yields the fair CD model Fy-.
The total loss function is defined as:

Liotar = Lep + aLfair) (10)

where « is the hyperparameter of fairness regularization. The pseu-
docode for the implementation is in Appendix B.

By leveraging L, as the fairness objective and employing the
group label inference process, FairWISA is capable of enhancing
fairness with the inferred group labels as proxies.

3.5 Theoretical Analysis

In CD model training, sensitive attributes are mistakenly associ-
ated with the output, leading the model to learn shortcuts rather
than the learner’s actual proficiency level. This often occurs due
to biased sampling or labeling in the training data. Similarly, gen-
eralization issues occur when models rely on shortcuts, resulting
in poor performance on new data. Therefore, recent studies have
shown that fairness problems are related to out-of-distribution is-
sues [31]. From this perspective, improving model fairness can be
viewed as enhancing generalization under specific distributional
shifts. Thus, the fairness problem can be viewed as a special case
of the generalization problem.

The goal of fair CD is to develop models that do not rely on
associations between sensitive attributes and predicted outcomes,
performing well across unknown target distributions. To this end,
we conduct analyses from the perspective of out-of-distribution gen-
eralization to demonstrate that FairWISA is theoretically supported.
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Our analysis demonstrates that implementing FairWISA effectively
reduces the upper bound of the error optimization function for
fairness generalization, thereby proving its effectiveness. Draw-
ing inspiration from prior research [34, 46], we have the following
proposition.

Proposition 1. (Proposition 2.1 in [46]) Let X be a space, H be
a class of hypotheses corresponding to this space, and dgpq¢ be the
H -divergence that measures distributional differences. Let Q be the
target distribution and the collection {IP’I-}i.‘:1 be distributions over

X and let {<pi}f.<:1 be a collection of non-negative coefficients with
>i @i = 1. Let O be a set of distributions such that for every S € O
the following holds:

2. ¢t (Pi,S) < maxdynp(Pi. P, (1)
- )
Then, for any h € H, the error on the target domain Q, denoted as
eg(h), is proven to satisfy the following [46]:

1 . 1
eq(h) < WZ piee, () +5 min dyonp (5, Q5 max dyan(Pi P)),

(12)
wherey = ¥.; iAi and each A; is the error of an ideal joint hypothesis
for Q and Py, ep, (h) is the error for a hypothesis h on a distribution
P;.

From Proposition 1, the upper bound of the model’s error in the
unseen target domain Q can be expressed as Eq. (12). A lower value
of eg(h) indicates better generalization performance of the model.
Then, we analyze each term of Eq. (12).

For the first term, A, can be ignored in practice because it is
small in reality. For the second term, ); @;ep; (h) represents the er-
ror in the training domain. Empirical Risk Minimization (ERM) is an
appropriate method for controlling this term. FairWISA optimizes
it by minimizing Lcp. For the third term, § mingc o dgyp/(S, Q)
is the smallest H-divergence between S and Q. Given that Q is un-
known, the only way to reduce this term is to expand the range of
O, thereby increasing the likelihood of finding an S that is closer to
Q. According to Eq. (11), maximizing the distribution gap between
P; and P; achieves this. In FairWISA , we infer group labels by maxi-
mizing Ly, which increases the distributional disparity between
groups. For the last term, %maxi,j dgypn4(Pi, P;) represents the
maximum pairwise 9{-divergence among the source domains. Fair-
WISA minimizes L, to reduce the differences between different
domains, thereby decreasing the value of % max; j dppg(Pi, Pj).

The above analysis provides theoretical insights into the steps
FairWISA takes: minimizing Lcp for improving accuracy, maxi-
mizing Ly, to amplify the distribution gap between groups for
inferring sensitive group labels, and minimizing L,;, for improv-
ing fairness.

4 Experiments

4.1 Datasets and Experiment Settings

Datasets. We conduct experiments on two widely used education
datasets: PISA 7 and SLP 8. The detailed descriptions of PISA and
SLP are provided in Appendix C.1.

https://www.oecd.org/pisa/data/
8https://aic-fe.bnu.edu.cn/en/data/index.html
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Evaluation metrics. In the experiments, we evaluate both the
accuracy and group fairness of the CD models using appropriate
metrics, allowing for comparison against baseline methods. For
accuracy, the Area Under the ROC Curve (AUC) and Accuracy
(ACC) are used, with higher values indicating better accuracy. For
fairness, EO [21], NEO [28], and Fcp [67] are employed, where
values closer to 0 reflect more equitable treatment across different
groups. The detailed descriptions of the fairness metrics are in C.3.
Baselines. We conduct comparisons with three backbones: IRT
[22], MIRT [2], and NCDM [49, 50]. Based on these, we compare
three fairness methods without sensitive attributes to FairWISA:
ARL [25], KD [8], and EIIL [13]. Additionally, we designed two
methods to validate the performance of each stage of FairWISA:
F_Attr (which obtains group labels based on known sensitive at-
tributes) and Reg_EO (which uses pseudo-labels with EO as the
fairness objective). Details of these baselines are provided in Appen-
dix C.2 and the parameter setting information for them is provided
in Appendix C.5.

4.2 Experimental Results

Performance on accuracy and fairness. We compare FairWISA
with baselines on the three CD models as backbones. Table 1 and
Table 2 show the accuracy and fairness performance on multiple
sensitive attributes on the PISA and SLP datasets. The results indi-
cate that all original CD models exhibit unfairness, underscoring
the imperative to investigate fairness in cognitive diagnosis. And
For all the methods, as fairness is enhanced, concomitant reduc-
tions in accuracy are observed. This is a typical fairness-accuracy
trade-off pattern.

As evidenced in both Table 1 and Table 2, FairWISA substantially
enhances the fairness while accuracy losses are constrained within
2.5% relative to backbones (IRT, MIRT, NCDM). This suggests that
FairWISA is effective in modeling CD fairness without using sensi-
tive information. And compared to baselines, FairWISA consistently
demonstrated lower values for EO, NEO, and Fcp in the majority
of cases, while maintaining closely comparable accuracy metrics.
This suggests that FairWISA is more competitive in terms of fair-
ness performance. It is observed that there are some anomalies in
the results presented in the tables. For example, in the SLP dataset,
FairWISA performs slightly worse compared to the baselines when
NCDM is used as the backbone. This may be due to the higher
number of parameters for NCDM and the lower amount of data in
SLP, and thus the unlearned sufficient unfairness bias for getting
guidance information of grouping.

In summary, FairWISA proves effective in enhancing the fairness

of cognitive diagnosis without significant compromises in accuracy
and it is competitive with baselines.
Performance on Robustness. Here, we introduce a "Challenging
Test" scenario to evaluate performance under group distributional
biases. This test creates a fairness distribution that differs from the
training data by varying the correlation between sensitive attribute
groups and labels. Details of the design process are in Appendix C.4.
The motivation behind this design is to comprehensively assess
FairWISA’s adaptability across diverse fairness distributions.

Table 3 and Table 4 show the results of the experiments on PISA
and SLP, respectively. Compared to Tables 1 and 2, all methods in
Tables 3 and 4 exhibited a decrease in accuracy (AUC and ACC).
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Table 1: Comparison of different approaches on PISA. OECD, Gender, and ESCS serve as sensitive attributes, dividing data
samples into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA | MIRT ARL EIIL KD FairWISA|NCDM ARL EIIL KD FairWISA
AUCT 0.8049 0.7833 0.7809 0.7820 0.7827 0.7995 0.7802 0.7838 0.7909 0.7813 0.7771 0.7713 0.7744 0.7666 0.7749
ACCT 0.7316 0.7134 0.7138 0.7119 0.7130 0.7273 0.7117 0.7146 0.7202 0.7106 0.7135 0.7108 0.7064 0.7089 0.7101
OECD [0.0970 0.0791 0.0847 0.0789 0.0491 0.0931 0.0665 0.0744 0.0828 0.0437 0.0737 0.0656 0.0644 0.0706 0.0591
EO | Gender|0.0435 0.0360 0.0376 0.0367 0.0262 0.0419 0.0323 0.0354 0.0379 0.0246 0.0327 0.0294 0.0290 0.0316 0.0283
ESCS |0.1122 0.0926 0.0959 0.0936 0.0597 0.1062 0.0779 0.0826 0.0952 0.0529 0.0866  0.0777 0.0774 0.0846 0.0690
OECD [0.1197 0.0969 0.1088 0.0948 0.0633 0.1204 0.0854 0.0923 0.1068 0.0566 0.0898 0.0759 0.0761 0.0794 0.0706
NEO | Gender|0.0597 0.0473 0.0539 0.0468 0.0351 0.0619 0.0437 0.0476 0.0535 0.0337 0.0435 0.0368 0.0386 0.0373 0.0368
ESCS |0.1111 0.0864 0.1017 0.0862 0.0508 0.1091 0.0723 0.0795 0.0943 0.0420 0.0788 0.0662 0.0601 0.0693 0.0581
OECD [0.0498 0.0243 0.0338 0.0232 -0.0071 | 0.0460 0.0110 0.0210 0.0321 -0.0138 0.0182 0.0070 0.0033 0.0116 0.0006
Fep_so Gender | 0.0235 0.0113 0.0154 0.0109 -0.0003 0.0225 0.0071 0.0118 0.0155 -0.0013 0.0076  0.0025 0.0030 0.0041 0.0015
ESCS |0.0477 0.0208 0.0305 0.0211 -0.0130 0.0416 0.0054 0.0137 0.0272 -0.0216 0.0143 0.0035 0.0070 0.0087 -0.0052

Table 2: Comparison of different approaches on SLP. Gender and Income serve as sensitive attributes, dividing data samples

into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA|MIRT ARL EIIL KD FairWISA[NCDM ARL EIIL KD FairWISA

AUCT 0.8806 0.8652 0.8496 0.8650 0.8675 0.8777 0.8604 0.8594 0.8593  0.8606 0.8439  0.8399 0.8401 0.8396 0.8420
ACC T 0.8350 0.8295 0.8119 0.8267 0.8256 0.8337 0.8229 0.8230 0.8229  0.8213 0.8153 0.8129 0.8127 0.8101 0.8112
FO | Gender[0.0580 0.0454 0.0532 0.0409 0.0396 |0.0541 0.0519 0.0433 0.0553  0.0409 0.0564 0.0315 0.0341 0.0308 0.0476
Income | 0.0417 0.0336 0.0308 0.0321 0.0299 |0.0405 0.0367 0.0344 0.0385  0.0327 0.0432 0.0228 0.0270 0.0222 0.0377

NEO | Gender | 0.1124 0.0842 0.0981 0.0734 0.0572 |0.1211 0.1329 0.0723 0.1260  0.0527 0.0783 0.0225 0.0296 0.0239 0.0520
Income | 0.0713 0.0611 0.0556 0.0470 0.0378 |0.0731 0.0649 0.0524 0.0693  0.0426 0.0527 0.0217 0.0267 0.0151 0.0381

F Gender[0.0241 0.0025 0.0164 -0.0053 -0.0058 [0.0222 0.0171 -0.0092 0.0185 -0.0053 | 0.0110 -0.0268 -0.0220 -0.0287 -0.0014
CD—0  Income|0.0146 0.0016 0.0051 -0.0060 -0.0058 |0.0125 0.0026 -0.0035 0.0070  -0.0033 0.0068 -0.0217 -0.0156 -0.0249 -0.0011

Table 3: Comparison of different approaches on PISA challenging test. OECD, Gender, and ESCS serve as sensitive attributes,
dividing data samples into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA[MIRT ARL EIIL KD FairWISA[NCDM ARL EIL KD FairWISA
AUCT 0.7081 0.7065 0.7013 0.7073 0.7448 | 0.7059 0.7112 0.7155 0.7075 0.7338 0.7101  0.7204 0.7215 0.7181  0.7220
ACC T 0.6531 0.6521 0.6464 0.6524 0.6854 | 0.6533 0.6596 0.6571 0.6549 0.6761 0.6571 0.6615 0.6597 0.6564  0.6655
OECD [0.0556 0.0436 0.0491 0.0422 0.0133 | 0.0549 0.0373 0.0443 0.048 0.0232 0.0419 0.0361 0.0355 0.039 0.0331
EO | Gender|0.0252 0.0217 0.0238 0.0213 0.0008 | 0.0238 0.0158 0.0165 0.0211 0.0045 0.0199 0.0173 0.0173 0.0198  0.0131
ESCS |0.0736 0.0610 0.0645 0.0619 0.0219 | 0.0704 0.0534 0.0546 0.0639 0.0337 0.0582  0.0523 0.0538 0.0577  0.0464
OECD [0.0342 0.0285 0.0315 0.0293 0.0159 | 0.0346 0.0264 0.0261 0.032 0.0138 0.0266 0.0231 0.0209 0.0253  0.0208
NEO | Gender|0.0019 0.0005 0.0010 0.0001 0.0042 0.0032 0.0048 0.0080 0.0031 0.0067 0.0002 0.0003 0.0044 0.0010 0.0046
ESCS |0.0539 0.0394 0.0429 0.0397 0.0200 | 0.0509 0.0271 0.0332 0.0405 0.0120 0.0361 0.0296 0.0249 0.0312  0.0211
OECD [0.5286 0.5057 0.5244 0.5044 0.4060 | 0.5282 0.4876 0.4946 0.5126 0.4377 0.4933  0.4737 0.4725 0.4815  0.4677
Fep_o Gender|0.3645 0.3539 0.3642 0.3530 0.3050 | 0.3655 0.3468 0.3503 0.3586 0.3228 0.3468 0.3364 0.3386 0.3392  0.3355
ESCS |0.5268 0.5011 0.5223 0.5006 0.3948 | 0.5240 0.4803 0.4867 0.5067 0.4273 0.4887 0.4685 0.4594 0.4764  0.4588

Table 4: Comparison of different approaches on SLP challenging test. Gender and Income serve as sensitive attributes, dividing
data samples into two groups for fairness evaluation. Bolding signifies the best performance among all methods.

IRT ARL EIIL KD FairWISA[MIRT ARL EINL KD FarWISA[NCDM ARL EIIL KD FairWISA

AUCT 0.8141 0.8017 0.8009 0.8023  0.8211 | 0.8088 0.7864 0.7864 0.7826  0.8098 0.7822  0.7994 0.7958 0.7930 0.7915
ACC T 0.7228 0.7136 0.7234 0.7096  0.7263 | 0.7169 0.6940 0.6940 0.6945  0.7198 0.7097 0.6952 0.7101 0.7002  0.7173
FO | Gender | 0.0957 0.0773 0.0855 0.0705  0.0655 [0.0918 0.0863 0.0863 0.0893  0.0735 0.1026  0.0389 0.0634 0.0546 0.0876
Income | 0.0762 0.0607 0.0621 0.0562  0.0557 | 0.0787 0.0743 0.0743 0.0710  0.0605 0.0775 0.0307 0.0496 0.0403 0.0637

NEO | Gender | 0.1089 0.0774 0.0870 0.0699  0.0525 [0.1125 0.1149 0.1149 0.1117  0.0461 0.0674 0.0002 0.0222 0.0121 0.0441
Income | 0.0652 0.0402 0.0554 0.0404 0.0215 | 0.0637 0.0625 0.0625 0.0839  0.0352 0.0623 0.0104 0.0171 0.0214 0.0292

F Gender | 0.1315 0.1114 0.1190 0.1065  0.0917 [0.1345 0.1367 0.0966 0.1335  0.0905 0.1139 0.0537 0.0709 0.0664 0.0918
CD—0  Income | 0.5681 0.5640 0.5267 0.5582  0.5018 | 0.5783 0.6135 0.0542 0.6178  0.5184 0.5661 0.5207 0.5199 0.5220  0.5179

This is because the CD models tend to learn the unfair bias of the
data during training to improve the accuracy under the same distri-
bution. Thus, despite data distribution shifts, the CD models still
use learned unfair bias for predictions, resulting in reduced accu-
racy when t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>