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ABSTRACT
The cold start problem in recommender systems is a long-standing
challenge, which requires recommending to new users (items) based
on attributes without any historical interaction records. In these
recommendation systems, warm users (items) have privileged col-
laborative signals of interaction records compared to cold start
users (items), and these Collaborative Filtering (CF) signals are
shown to have competing performance for recommendation. Many
researchers proposed to learn the correlation between collabora-
tive signal embedding space and the attribute embedding space to
improve the cold start recommendation, in which user and item cat-
egorical attributes are available in many online platforms. However,
the cold start recommendation is still limited by two embedding
spaces modeling and simple assumptions of space transformation.
As user-item interaction behaviors and user (item) attributes nat-
urally form a heterogeneous graph structure, in this paper, we
propose a privileged graph distillation model (PGD). The teacher
model is composed of a heterogeneous graph structure for warm
users and items with privileged CF links. The student model is com-
posed of an entity-attribute graph without CF links. Specifically,
the teacher model can learn better embeddings of each entity by
injecting complex higher-order relationships from the constructed
heterogeneous graph. The student model can learn the distilled out-
put with privileged CF embeddings from the teacher embeddings.
Our proposed model is generally applicable to different cold start
scenarios with new user, new item, or new user-new item. Finally,
extensive experimental results on the real-world datasets clearly
show the effectiveness of our proposed model on different types
of cold start problems, with average 6.6%, 5.6%, and 17.1% improve-
ment over state-of-the-art baselines on three datasets, respectively.
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1 INTRODUCTION
Collaborative Filtering (CF) is widely applied to various scenarios
of recommender systems, which provides personalized item rec-
ommendation based on past user behaviors, such as purchasing a
product [15, 23, 25]. Recently, graph based recommendations have
shown huge success for solving data sparsity problem [2, 33, 34].
Since the user-item interactions naturally form a graph, graph based
recommendations obtain better user and item representations by
aggregating higher-order neighbor information in a data sparsity
setting. However, the cold start problem is still a challenge in CF
based recommendation. Since new users or items have no histori-
cal interaction records, a conventional way to solve the cold start
problem is to introduce additional data such as reviews, social net-
works, attributes, etc. Among them, user and item attributes are
easily acquired in most online platforms (e.g., Facebook, Amazon)
and described specific features. In this paper, we focus on attribute
information in the cold start setting.

For most attribute enhanced recommendation methods, we sum-
marize them into three categories according to the difference of
input data: CF-based, content-based, and hybrid methods. Given the
history interaction data and attributes, some researchers leverage
collaborative information of the existing entities and the attribute
similarity for new user (item) recommendations [9, 26, 43]. How-
ever, they do not model attribute information to feature space.
Deep neural networks have achieved better performance in feature
engineering modeling. Content-based methods make full use of
auxiliary information of users and items to enhance the modeling
of preference embedding [7, 8, 16, 28, 30]. For example, DeepMu-
sic [28] and CDL [30] were proposed to incorporate content data
into deep neural networks and learned a general transformation
function for content representations. A simple assumption is that
the attribute information can be mapped into the embedding space
by a general transformation function, which ignores collaborative
signals for new users or items side. In order to overcome this short-
coming and further improve the model performance based on the
content information, hybrid methods are proposed. Hybrid models
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fuse the CF and content embedding, and model the relations be-
tween CF and content space [29, 44]. For example, DropoutNet [29]
was proposed to make full use of content and pretrained CF em-
bedding for recommendation. However, most of these methods still
have some weaknesses in dealing with those new users (items), that
have no interactions with existing items (users).

Graph based recommendations are limited by user-item links. To
obtain unseen node embedding in a graph, inductive representation
learning combines node features and graph structures for node
embedding [10, 35, 37]. For example, PinSage is a content-based
Graph Convolutional Networks (GCN) model for recommending
items, which gathers both graph structure and node features for
embedding learning [37]. They still have weaknesses in tackling
new user (item) problem mentioned above. In other words, how to
make recommendations for new users (items), who have no links
during test, is still challenging. Since user-item links are available
during train while not available during test, interaction data is ca-
pable of providing privileged information. This problem can also be
treated as how to leverage attribute information to distill privileged
information for better recommendations of new users (items).

To this end, in this paper, we take advantages of graph learning
and knowledge distillation in privileged information modeling and
propose a novel privileged graph distillation model (PGD) for the
cold start problem, which new users (items) have no link during
test. Specifically, we introduce attributes of users (items) as nodes
into a user-item graph and construct a heterogeneous graph, so that
attribute representations can capture higher order information dur-
ing embedding propagation. Since privileged information is only
available offline and effective for prediction, we employ knowl-
edge distillation method to tackle the cold start problem. More
specifically, the teacher model can access all the information and
make full use of attributes for privileged information learning and
user preference modeling. The student model is constructed on an
entity-attribute graphwithout CF links, which can obtain privileged
information based on attributes under the guidance of the teacher
model. Then, the student model can fuse CF signals of user or item
embedding for final recommendations. Thus, PGD can not only
make full use of attribute information for a better recommenda-
tion, but also alleviate the cold start problem when recommending
for new users or items. Finally, we detail the cold start problem
in recommendation into three sub-tasks and evaluate the model
performance with three datasets. Extensively experimental results
demonstrate the superiority of our proposed PGD.

2 RELATEDWORK
2.1 Cold Start Recommendation
CF-based algorithms personally recommend products by collect-
ing explicit rating records and implicit feedback, which are widely
applied in various recommendation systems [15, 23, 25]. These
methods leverage matrix factorization to obtain low-dimensional
representations of users and items. For example, Salakhutdinov
et al. [23] proposed Bayesian Personalized Ranking (BPR), which
learned user and item latent vectors based on implicit feedback.
Moreover, with the development of GCN, plenty of GCN-based
CF methods are proposed to learn better collaborative filtering
and alleviate the data sparsity problem [5, 12, 34]. For example,

Chen et al. [5] designed LR-GCCF model to simplify the embed-
ding propagation process with linear graph convolutions, which
achieved excellent performance. However, most CF-based methods
require links between users and items, which limit their applica-
tions. In order to solve the cold start problem, CF-based methods
leverage social data and basic matrix factorization to capture the
new users’ preferences conventionally [9, 22, 26, 43]. Social data
based methods first keep the pretrained CF representations on im-
plicit feedback data, and then generate the new user’s embedding
with the connection between new users and old users [26]. Despite
the achievements they have made, most of these models still have
some drawbacks. These methods cannot be widely used in the case
of both new users and new items, and underestimate the potential
of users’ and items’ attribute information .

In order to remedy the shortcomings of CF-based methods, re-
searchers proposed to utilize additional content information and
designed content-based methods. Content-based methods take the
profile as input and train a general transform function for content
information, in which new user or item representation can be gener-
ated. These methods usually learn a mapping function to transform
the content representation into collaborative space [8, 28, 30], and
leverage deep cross-network structure to capture higher-order re-
lationships between features [16, 32]. For example, xDeepFM was
proposed to model cross interactions at the vector-wise level ex-
plicitly [16]. In order to solve the cold start problem in graph based
recommendations, PinSagewas proposed to leverage both attributes
as well as the user-item graph structure to generate better embed-
dings [37]. However, most of these methods do not consider the
complicated connection between CF embedding space and content
space for each user (item), in which new user (item) representations
cannot reflect the association with CF information.

To make full use of both CF-based methods and content-based
methods, hybrid models are proposed to make better recommen-
dations [29, 35, 44]. Most of these methods learn CF embedding
and transformation functions to minimize prediction errors. A typ-
ical example is Heater [44], which dropped CF signals randomly
to imitate new users or items situations. In particular, the CF rep-
resentation is pretrained as a constraint for content embedding
learning. The final prediction is conducted with a random choice
of CF representation or content representation. Since the construc-
tion of user-item bipartite graph relies on interaction records, the
learning of new user (item) representation is still a problem in
graph based recommendations. Thus, inductive learning methods
of graph are proposed to tackle unseen nodes’ representation prob-
lem [3, 10, 39, 40]. Among these methods, TransGRec was proposed
to feed the item’s CF information and content information into
the node initialization layer of the graph [35]. Especially, Trans-
GRec was designed to learn graph’s structure information with the
transfer network which is used to solve new user (item) problem.

2.2 Knowledge Distillation and Applications in
Recommendations

Knowledge distillation is first proposed to address the lack of data
and devices with limited resources. It aims to learn a better student
model from a large teacher model and abandon the teacher model
at the testing stage. In recent years, the knowledge distillation is
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presented in three ways: logits output [13, 19, 42], intermediate
layers [24, 38], and relation-based distillation [4, 17, 20, 21]. Most
of methods assume that the teacher model and the student model
input the same regular data in the distillation process, which means
the available information at test is the same as at train. In the real
world, some information is helpful for prediction tasks but not al-
ways available, which called privileged information (e.g., medical
reports in pathology analysis). Therefore, privileged distillation is
proposed to tackle the lack of data problem in testing online, in
which privileged information is only fed into the teacher model.
Lopez et al. [18] proposed an approach that guided the student
model with fewer data and distilled the teacher model’s privileged
information. Since knowledge distillation is capable to solve the
data missing and time-consuming problems, it attracts attention in
recommendation areas. There are some works that get light models
with better performance by model distillation [14, 27, 31, 41], which
solve the problem of limited equipment resources and reduce the
running time. For example, Zhang et al. [41] constructed an embed-
ding based model to distill user’s meta-path structure and improve
accuracy and interpretability. Meanwhile, to solve the problem that
privileged information is unavailable in online recommendations,
researchers proposed to introduce privileged distillation into recom-
mendations [6, 36]. Selective Distillation Network [6] was proposed
to use a review process framework as the teacher model, so that the
student model can distill effective review information. Xu et al. [36]
proposed Privileged Features Distillation (PFD) to distill privileged
features and in click-through rate and achieved better performance
in click-through rate and conversion rate. However, most methods
haven’t addressed the new user or item problem.

In this paper, we treat interaction data as privileged information
and design student network to imitate the situation of new users
or items. Our goal is to improve model performance on cold start
problems by distilling teacher’s graph structure information and
privileged information.

3 PROBLEM DEFINITION
In a collaborative filtering based recommendation system, there are
two sets of entities: a userset 𝑈 ( |𝑈 |=𝑀), and an itemset 𝑉 ( |𝑉 |=𝑁 ).
Since implicit feedback is available in most scenarios, we use a
rating matrix R ∈ R𝑀×𝑁 to denote the interaction information, with
𝑟𝑖 𝑗 = 1 indicates observed interaction between user 𝑖 and item 𝑗 ,
otherwise it equals to 0. Traditionally, the user-item interaction
behavior could be naturally formulated as a user-item bipartite
graph: G𝑅 =< 𝑈 ∪ 𝑉 ,A𝑅 >, where the graph adjacent matrix is
constructed from the interaction matrix R:

A𝑅 =

[
0𝑀×𝑀 R
R𝑇 0𝑁×𝑁

]
. (1)

Most of the attributes are sparse and categorical, and we gener-
ally convert continuous attributes to discrete distributions. Mean-
while, the entity attribute matrix X ∈ R(𝑀+𝑁 )×𝐷 is usually treated
as the supplement information for user-item bipartite graph, where
𝐷 is the dimension of user and item attributes. Besides, we employ
x𝑖 ∈ R𝐷 and x𝑀+𝑗 ∈ R𝐷 to denote the 𝑖𝑡ℎ user one-hot attribute
and the 𝑗𝑡ℎ item one-hot attribute (0 ≤ 𝑖 < 𝑀 , 0 ≤ 𝑗 < 𝑁 ). For

x𝑖 , the attribute’s indices are between 0 and (𝐷𝑢 − 1). For x𝑗 , the
attribute’s indices are between 𝐷𝑢 and (𝐷 − 1), where 𝐷𝑢 is the
dimension of user attributes.

The goal of graph based recommendations is to measure the
user preference and predict the preference score matrix R̂ ∈ R𝑀×𝑁 .
In order to evaluate the model performance, we also split the rec-
ommendation task into three sub-tasks to analyze the real-world
scenarios in a detailed way.
Task 1: When a new user with attributes appears, we recommend

existing (old) products to new users;
Task 2: When a new product with attributes appears, we have to

recommend new products to existing (old) users;
Task 3: When new users and new products appear at the same time,

we have to recommend new products to new users.
To this end, we propose a novel privileged graph distillation

model (PGD) to tackle the above challenges. Next, we will introduce
the technical details of PGD.

4 THE PROPOSED MODEL
Figure 1 illustrates the overall architecture of our proposed PGD,
which consists of three main components: 1) Teacher model: lever-
aging existing user-item interactions to learn user preference repre-
sentation and item representation; 2) User Student model: focusing
on new user preference modeling; 3) Item Student model: concen-
trating on new item modeling.

Before introducing the technical details, we first introduce the
necessary notations for the sake of convenience. We use U ∈ R𝑀×𝑑

and V ∈ R𝑁×𝑑 to denote the free embedding matrix of user and item
respectively, where 𝑀 and 𝑁 represent the number of users and
items. 𝑑 is the dimension of free embedding. Moreover, we leverage
Y ∈ R𝐷×𝑑 to represent the user attribute and item attribute node
embedding matrix. Besides, we employ y𝑘 and y𝑙 to denote the 𝑘𝑡ℎ
user attribute and the 𝑙𝑡ℎ item attribute (0 ≤ 𝑘 < 𝐷𝑢 , 𝐷𝑢 ≤ 𝑙 < 𝐷).
Next, we will introduce the technical details of our proposed PGD.

4.1 Teacher Model
As mentioned before, we intend to leverage attribute information
to build connections for new users and new items. To this end,
we construct a novel graph with the attributes as the nodes, and
design a novel GCN, which we name as Teacher model, to generate
comprehensive user and item embeddings, as well as predict the
ratings of users to items. The teacher model’s structure could be
formulated as a user-item-attributes graph: G =< 𝑈 ∪𝑉 ∪ X,A >,
where the graph matrix is constructed from the rating adjacent
matrix A𝑅 and attribute matrix X:

A =

[
A𝑅 X
X𝑇 0𝐷×𝐷

]
, (2)

Next, we first introduce the graph construction and model ini-
tialization. Then, we give a detailed description of the embedding
propagation and model prediction.

Model Initialization Layer. In this layer, we leverage the free
embedding matrix U ∈ R𝑀×𝑑 and V ∈ R𝑁×𝑑 to denote users and
items. The attribute embeddings of users and items are represented
with Y. They are treated as input and initialized with Gaussian
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Figure 2: The user student framework of PGD.

Distribution, then updated during the propagation of GCN. We
have to note that the free embedding matrix U, V will be shared
with Student model, which will be introduced in the following parts.

Embedding Propagation Layer. In this part, we employ GCN
to propagate users’ (items’, user attributes’, item attributes’) embed-
dings to capture higher-order information and obtain the proximity
between four different type nodes for better node representation.
Specifically, let u𝑡

𝑖
and v𝑡

𝑗
denote user 𝑖’s embedding and item 𝑗 ’s

embedding at 𝑡𝑡ℎ layer. And, y𝑡
𝑘
denotes the attribute embedding

for user, y𝑡
𝑙
denotes the attribute embedding for item. We leverage

the output of Initial Embedding Layer as the initial input of this
layer, which means u0

𝑖
= u𝑖 , v0

𝑗
= v𝑗 , y0

𝑘
= y𝑘 , y0

𝑙
= y𝑙 .

In order to extract the node embedding at (𝑡 + 1)𝑡ℎ with the
consideration of its neighbors’ embeddings and its own free embed-
ding at the 𝑡𝑡ℎ layer, we utilize the graph propagation and pooling
operation to update the embedding of each node. Taking user 𝑖 as
an example, we leverage 𝐴𝑖 = { 𝑗 |𝑟𝑖 𝑗 = 1} ∪ {𝑘 |𝑥𝑖𝑘 = 1} to denote

the item set that he has clicked and his corresponding attribute set.
The updating process can be formulated as follows:

u𝑡+1
𝑖 = (u𝑡𝑖 +

∑
𝑗 ∈𝐴𝑖

v𝑡
𝑗

|𝐴𝑖 |
+

∑
𝑘∈𝐴𝑖

y𝑡
𝑘

|𝐴𝑖 |
) . (3)

By employing this layer, PGD not only utilizes item neighbor infor-
mation to describe the user’s implicit preference, but also makes
full use of attributes for the user’s explicit feature.

Similarly, PGD is capable of updating the item embedding based
on users who have clicked it and the corresponding item attributes.
Therefore, we leverage 𝐴𝑀+𝑗 = {𝑖 |𝑟𝑖 𝑗 = 1} ∪ {𝑙 |𝑥 ( 𝑗+𝑀)𝑙 = 1} to
denote the user set who has clicked the item 𝑗 and the corresponding
attribute set of item 𝑗 . Then, the updating operation for item 𝑗 in
the (𝑡 + 1)𝑡ℎ layer can be described as follows:

v𝑡+1
𝑗 = (v𝑡𝑗 +

∑
𝑖∈𝐴𝑀+𝑗

u𝑡
𝑖

|𝐴𝑀+𝑗 |
+

∑
𝑙 ∈𝐴𝑀+𝑗

y𝑡
𝑙

|𝐴𝑀+𝑗 |
) . (4)

Besides, we add attribute nodes in GCN to enhance user preference
modeling. Thus, user attribute embedding can be updated based
on all users who have the same attributes. Meanwhile, the item
attribute embedding can be updated in a similar way. The updating
process at the (𝑡 + 1)𝑡ℎ layer can be formulated as follows:

y𝑡+1
𝑘

= y𝑡
𝑘
+

∑
𝑖∈𝐴𝑘+𝑀+𝑁

u𝑡
𝑖

|𝐴𝑘+𝑀+𝑁 | , 0 ≤ 𝑘 < 𝐷𝑢 ,

y𝑡+1
𝑙

= y𝑡
𝑙
+

∑
𝑗 ∈𝐴𝑙+𝑀+𝑁

v𝑡
𝑗

|𝐴𝑙+𝑀+𝑁 | , 𝐷𝑢 ≤ 𝑙 < 𝐷,

(5)

where 𝐴𝑘+𝑀+𝑁 = {𝑖 |𝑥𝑖𝑘 = 1} ∈ X denotes the user set who has the
attribute 𝑦𝑘 . 𝐴𝑙+𝑀+𝑁 = { 𝑗 |𝑥 ( 𝑗+𝑀)𝑙 = 1} ∈ X denotes the item set
that has the attribute 𝑦𝑙 .

In order to illustrate the embedding propagation process more
clearly, we formulate the fusion embedding in the matrix norm. Let
matrix U𝑡 , V𝑡 , Y𝑡 denote the embedding matrices of users ,items
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and attributes after 𝑡𝑡ℎ propagation, then the updated embedding
matrices after (𝑡 + 1)𝑡ℎ propagation as:


U𝑡+1

V𝑡+1

Y𝑡+1

 = (

U𝑡

V𝑡

Y𝑡

 + D−1A ×

U𝑡

V𝑡

Y𝑡

), (6)

whereD is the degreematrix ofA, which could efficiently propagate
neighbors’ embeddings and update fusion matrices.

Model Prediction Layer. In this layer, we treat the output of
Embedding Propagation Layer as the final user embedding û𝑖 and
item embedding v̂𝑗 . In this layer, we treat the output of Embedding
Propagation Layer as the final user embedding and item embeddings
(i.e., u𝐿

𝑖
, v𝐿

𝑗
), where 𝐿 is the number of GCN layers in Teacher model.

Then, we predict user i’s rating to item j by calculating the dot
product of their embeddings, which can be formulated as follows:

𝑟𝑖 𝑗 = û𝑖 (v̂𝑗 )𝑇 = u𝐿𝑖 (v
𝐿
𝑗 )
𝑇 . (7)

4.2 Student Model
As mentioned before, we introduce attribute information of users
and items to alleviate the cold start problem in GCN based recom-
mendation. However, attribute information still has some weak-
nesses in analyzing the collaborative filtering information of users,
which is very important for user preference modeling. To this end,
we intend to leverage distillation techniques to train a student
model, which can utilize the attribute information to access the
collaborative signals in the teacher model. Along this line, the stu-
dent model can make full use of attribute information to model
user preference comprehensively. In concerned details, the student
model can be classified into two sub-models based on attribute
source (i.e., user attributes or item attributes): 1) User Student model,
2) Item Student model. Specially, the attribute embedding of users
in User Student model represented with E = {e0, e1, ..., e(𝐷𝑢−1) } and
the attribute embedding of items in Item Student model represented
with F = {f𝐷𝑢 , f𝐷𝑢+1, ..., f(𝐷−1) }. The former focuses on the new user
problem and takes user attributes and items as input. The latter
focuses on the new item problem and takes item attributes and
users as input. The framework is illustrated in Figure 2. Since these
two sub-models perform in a similar way, we take the User Student
model as an example to introduce the technical details for the sake
of simplicity in the following parts.

Graph Construction. Since the direct connections between
new users and items are unavailable in the student model, we first
need to construct the graph between new users and items based
on the attribute information. As illustrated in Figure 2, if user 𝑖 has
clicked the item 𝑗 , we could obtain the direct link between user 𝑖 and
item 𝑗 in the teacher graph. However, this direct link is unavailable
in the student graph. To this end, we employ indirect links between
user attributes and items to replace the direct link between user
and items. Specifically, if user 𝑖 have clicked item 𝑗 , which will not
be provided to the student model, we link the attributes of user 𝑖 to
item 𝑗 to construct the user-attribute-item graph for User Student
model. Moreover, if multiple users with attribute 𝑘 have clicked
item 𝑗 , we will assign a higher weight to the indirect link between
attribute 𝑘 and item 𝑗 .

We employ S𝑢 ∈ R𝑁×𝐷𝑢 to denote item-user attribute matrix
and S𝑣 ∈ R𝑀×𝐷𝑣 denote user-item attribute matrix, where S𝑢 and

S𝑣 is constructed from the user-item graph adjacent matrix A𝑅 and
entity attribute matrix X:

A𝑅X =

[
0𝑀×𝐷𝑢 RX𝑉

R𝑇X𝑈 0𝑁×𝐷𝑣

]
=

[
0𝑀×𝐷𝑢 S𝑣
S𝑢 0𝑁×𝐷𝑣

]
. (8)

where X𝑈 represents the user attribute part of X and X𝑉 rep-
resents the item attribute part of X. Since S𝑢 is a two-order link
matrix, in which 𝑠 𝑗𝑘 ≥ 1 indicates the count that item 𝑗 has indirect
links with user attribute 𝑘 . 𝑠 𝑗𝑘 = 0 denotes there is no indirect
link between item 𝑗 and user attribute 𝑘 . The user student model’s
graph structure could be formulated as a item-user attribute graph:
G𝑆𝑢 =< 𝑉 ∪ X𝑈 ,A𝑆𝑢 >, where the graph adjacent matrix is con-
structed from the item-user attribute matrix A𝑆𝑢 :

A𝑆𝑢 =

[
0𝑁×𝑁 S𝑢
S𝑇𝑢 0𝐷𝑢×𝐷𝑢

]
. (9)

Since this student graph G𝑆𝑢 is constructed based on second-
order connections, it will be a little denser than traditional user-item
graph. After graph construction, we employ the item embedding
from the teacher model as the initial embedding of the item in the
student model. For the user attribute embedding e𝑘 ∈ R𝑑 , since
user attributes only have indirect connection with items, we do
not employ the user attribute embedding from teacher model and
initialize it with Gaussian Distribution on the other hand.

Embedding Propagation Layer. Since there only exist indirect
links between items and user attributes, we leverage the item free
embedding to update the attribute embedding e𝑘 . Taking the update
in the (𝑡+1)𝑡ℎ layer as an example, we aggregate the item neighbors
of user attribute 𝑘 to update its embedding. Let𝐴𝑆𝑢

𝑘+𝑁 = { 𝑗 |𝑠 𝑗𝑘 ≥ 1}
denotes the item set that has indirect connection with user attribute
𝑘 , the (𝑡 + 1)𝑡ℎ updating operation can be formulated as follows:

e𝑡+1
𝑘

= (e𝑡
𝑘
+

∑
𝑗 ∈𝐴𝑆𝑢

𝑘+𝑁

v𝑡
𝑗

|𝐴𝑆𝑢
𝑘+𝑁 |

). (10)

Meanwhile, item embedding can be updated with the correspond-
ing user attribute neighbors in a similar way. Let 𝐴𝑆𝑢

𝑗
= {𝑘 |𝑠 𝑗𝑘 >=

1} denotes the user attribute set that has indirect connections with
item 𝑗 . The (𝑡 +1)𝑡ℎ updating operation can be described as follows:

v𝑡+1
𝑗 = (v𝑡𝑗 +

∑
𝑗 ∈𝐴𝑆𝑢

𝑗

e𝑡
𝑘

|𝐴𝑆𝑢
𝑗
|
) . (11)

Similar to the teacher model, let matrix E𝑡 , V𝑡 denote the embed-
ding matrices of user attribute in the user student model and items
after 𝑡𝑡ℎ propagation, then the updated embedding matrices after
(𝑡 + 1)𝑡ℎ propagation as:[

V𝑡+1

E𝑡+1

]
= (

[
V𝑡

E𝑡

]
+ D𝑆𝑢 −1

A𝑆𝑢 ×
[
V𝑡

E𝑡

]
) . (12)

Finally, we can get the user attribute embedding and the up-
dated item free embedding. Taking new user 𝑖 and item 𝑗 as an
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example, the attribute set of new user 𝑖 can be represented with
𝑋𝑢𝑖 = {𝑘 |𝑥𝑖𝑘 = 1}. Their embeddings can be represented as follows:

u𝑈𝑖 =
∑

𝑘∈𝑋𝑢𝑖

e𝐿𝑆𝑢
𝑘

, v𝑈𝑗 = v𝐿𝑆𝑢
𝑗

, (13)

where 𝐿𝑆𝑢 is the number of GCN layers in the user student model.
Meanwhile, we can obtain the user embedding u𝐼

𝑖
and item embed-

ding v𝐼
𝑗
in a similar way.

Prediction Layer. In this layer, we intend to utilize the learned
user embedding and item embedding to calculate the corresponding
rating. Taking user 𝑖 and item 𝑗 as an example, the predicted rating
can be calculated with the following function:

𝑟𝑖 𝑗 = û𝑖 (v̂𝑗 )𝑇 . (14)

If the user and item are available simultaneously, the predicted
rating can be obtained with û𝑖 = u𝐿

𝑖
, v̂𝑗 = v𝐿

𝑗
, as illustrated in

Eq.7. When dealing with cold start problem, we employ different
components in PGD to generate different implementations of user
embedding û𝑖 and item embedding v̂𝑗 in Eq. 14, which is in favor of
tackling different situations of cold start problem in a unified way.

1) Task 1. In this task, we select the user student model. User
embedding u𝑖 can be represented with the sum of corresponding
attribute embedding e𝑘 (𝑘 ∈ 𝑋𝑢𝑖 ) in user student model. Item em-
bedding can be represented with the free embedding v𝐿

𝑗
generated

in teacher model. Finally, Eq. 14 can be modified as follows:

𝑟𝑖 𝑗 = û𝑖 (v̂𝑗 )𝑇 = u𝑈𝑖 (v𝐿𝑗 )
𝑇 = (

∑
𝑘∈𝑋𝑢𝑖

e𝐿𝑆𝑢
𝑘

) (v𝐿𝑗 )
𝑇 . (15)

2) Task 2. In this task, we select the item student model. For user
embedding, we select the user free embedding u𝐿

𝑖
from Teacher

model as the representation. For item representation, we make full
use of its attribute embedding 𝑓𝑙 (𝑙 ∈ 𝑋𝑣𝑗 ) as the needed embedding.
Therefore, Eq. 14 is modified as follows:

𝑟𝑖 𝑗 = û𝑖 (v̂𝑗 )𝑇 = u𝐿𝑖 (v
𝐼
𝑗 )
𝑇 = (u𝐿𝑖 ) (

∑
𝑙 ∈𝑋𝑣𝑗

f𝐿𝑆𝑣
𝑙

)𝑇 . (16)

3) Task 3. In this task, the user and item free embedding are
not available at the same time. Therefore, we employ both user
student model and item student model to generate the user and
item embeddings with their attribute information. Specifically, we
select the user embedding u𝑈

𝑖
and item embedding v𝐼

𝑗
, which are

driven from their own attributes, and modify Eq. 14 as follows:

𝑟𝑖 𝑗 = û𝑖 (v̂𝑗 )𝑇 = u𝑈𝑖 (v𝐼𝑗 )
𝑇 = (

∑
𝑘∈𝑋𝑢𝑖

e𝐿𝑆𝑢
𝑘

) (
∑

𝑙 ∈𝑋𝑣𝑗

f𝐿𝑆𝑣
𝑙

)𝑇 . (17)

4.3 Model Optimization
Since PGD contains two main components, the optimization also
consists of two parts: Rating Prediction Loss for Teacher Model, and
Graph Distillation Loss for PGD.

Rating Prediction Loss. For recommender system based on
implicit feedback, BPR-based on pair-wise ranking is the most
popular optimization algorithm. Thus, the objective function can
be formulated as follows:

𝐿𝑟 =
∑
𝑢∈𝑈

∑
(𝑖, 𝑗) ∈𝐵𝑢

−𝑙𝑛𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 ) + 𝛾 | |𝜃 | |2, (18)

where 𝜎 (·) is a sigmoid activation function. 𝐵𝑢 = {(𝑖, 𝑗) |𝑟𝑢𝑖 =

1∧𝑟𝑢 𝑗 ≠ 1} denotes the pairwise training data for user 𝑢. 𝑟𝑢𝑖 and
𝑟𝑢 𝑗 are computed by the free embedding of the teacher model.
𝜃 represents the user and item free embedding matrices. 𝛾 is a
regularization parameter that restrains the user and item free latent
embedding matrices.

Graph Distillation Loss. Since distillation techniques are em-
ployed in PGD to help the student model to learn better user and
item embeddings, as well as make accurate predictions based on the
attribute information, with the guidance of teacher model. Thus,
the learned user embedding u𝐿

𝑖
(item embedding v𝐿

𝑗
) from teacher

model and u𝑈
𝑖

(v𝐼
𝑗
) from student model should be similar. This

optimizing target can be formulated as follows:

𝐿𝑢 =

𝑀−1∑
𝑖=0

| |u𝐿𝑖 − u𝑈𝑖 | |2, 𝐿𝑣 =

𝑁−1∑
𝑗=0

| |v𝐿𝑗 − v𝐼𝑗 | |
2 . (19)

Meanwhile, we intend the student model to predict user prefer-
ence correctly. U and V represent the embedding matrices of users
and items in the teacher model. U𝑈 and V𝐼 represent the embedding
matrices of users and items in the student model. Thus, its predic-
tion result should be similar to the results of the teacher model.
which can be formulated as follows:

𝐿𝑠 = | |UV𝑇 − U𝑈 (V𝐼 )𝑇 | |2 . (20)

The Graph Distillation Loss will be formulated as follows:
𝐿𝑑 = 𝜆𝐿𝑢 + 𝜇𝐿𝑣 + 𝜂𝐿𝑠 , (21)

where 𝜆, 𝜇, 𝜂 are the weight of different information distillation loss.
We can adjust their values to focus our proposed PGD on tackling
different sub-tasks in code start problem in recommendation. After
obtaining the two parts objective functions, The final optimization
of our model can be formulated as follows:

𝐿𝑜𝑠𝑠 = 𝐿𝑟 + 𝐿𝑑 (22)

5 EXPERIMENTS
In this section, we conduct extensive experiments on three datasets
to verify the effectiveness of our proposed PGD for cold start rec-
ommendation. We aim to answer the following questions:

• Will the attribute information and the utilization method in
PGD be useful for solving the cold start problem (e.g., new
users or new items) in recommendations?

• Is the distillation technique helpful for student model to
learn useful knowledge from teacher model for user or item
embedding?

• What is the influence of each component in our proposed
PGD to the overall performance?

5.1 Datasets
In this paper, we select three suitable and public available datasets
to evaluate all the models, i.e., Yelp, XING [1], and Amazon-Video
Games [11]. Table 1 report the statistics of three datasets.

In order to evaluate the model performance on each of three
sub-tasks in cold start problem, we manually set the new users or
new items in the test sets[44]. Specifically, we randomly select 30%
users in the test set. Then, we keep the corresponding items and
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Table 1: The statistics of the three datasets.

Dataset Yelp XING Amazon-
Video Games

Train

Old Users 29,777 20,640 29,129
Old Items 27,737 17,793 22,547
Ratings 159,857 133,139 172,089
Density 0.019% 0.036% 0.026%

Val
Old Users 2,109 17,058 26,506
Old Items 1,812 10,357 10,189
Ratings 2,109 20,258 29,870

Test new user
New Users 12,749 7,105 /
Old Items 17,121 7,665 /
Ratings 65,127 12,858 /

Test new item
Old Users 27,067 11,013 22,027
New Items 11,975 7,598 10,170
Ratings 69,524 33,079 98,044

Test new user
and new item

New Users 11,662 4,618 /
New Items 8,734 4,276 /
Ratings 30,288 7,318 /

User Attributes 80 108 /
Item Attributes 183 81 76

remove their connections to construct the new user test set for Task
1. Meanwhile, we apply the same operation to generate a new items
test set for Task 2. As for Task 3, we collated interaction records
belonging to both the new user and the new product as the test set.
Then, we split 10% validation set from the rest old users and old
items. The details are reported in Table 1.

5.2 Experimental Setup
EvaluationMetrics. Since the cold start problem still can be treated
as top-K recommendation task, we select two popular ranking met-
rics to evaluate our model: HR@K and NDCG@K (𝐾 = {10, 20, 50}).

Parameter Settings. First of all, the dimensions of collaborative
filtering embedding and the attribute representation are all set as
64. The batch size is set as 2, 048. The depth 𝐿 of GCN is selected
from {1, 2, 3, 4}, and we also make an experiment to verify the
influence of different depths. During training, Adam is employed
as the optimizer with learning rate 0.001.

Gaussian distribution with a mean of 0 and variance of 0.01 is
employed to initialize the embedding matrices. At each iteration of
the training process, we randomly sample one candidate negative
sample to compose a triple data. In the testing phase, to avoid the
unfairness caused by the randomly negative samples, we evaluted
all models in the condition of all negative samples. As shown in
Eq. 21, there are three hyper-parameters 𝜆, 𝜇 and 𝜂. We tune the
three hyper-parameters on three different tasks respectively. The
combination for Yelp is {𝜆 = 100, 𝜇 = 1, 𝜂 = 0.01}, for Amazon-
Video Games is {𝜇 = 10} and for XING is {𝜆 = 1, 𝜇 = 100, 𝜂 = 0.001}.

5.3 Overall Results
Tables 2 and 3 report the overall results on three datasets. We can
obtain that PGD outperforms all baselines across all the datasets
with different evaluation metrics. Specifically, PGD achieves aver-
age 2.03%, 11.67%, 6.01% improvement across three sub-tasks on
Yelp, average 27.83%, 7.28%, 16.06% improvement on XING, and
average 5.6% improvement on Amazon-Game Videos, respectively.
This phenomenon demonstrates the effectiveness of introducing
attribute information into graph as node and learning attribute

embedding and entity embeddings simultaneously under the graph
constraint. Moreover, PGD makes full use of distillation techniques
to narrow down the gap between attribute embedding and CF-based
embedding and help the student model to learn entity embedding
from the teacher model with the attribute information as input.

Meanwhile, PGD tries to tackle all three sub-tasks in a unified
framework. To this end, we also designed a student baseline to
address new item or new user problem independently. Specifically,
for Task 1, we only select the user student model to learn the
user attribute embedding and item CF-based embedding. For Task
2, we have similar operations. As for Task 3, we select the user
attribute embedding and item attribute embedding from two student
models. The corresponding results are illustrated in Tables 2 and
3. We can obtain that PGD still outperforms the student baselines,
indicating the superiority and necessity of distilling and modeling
user preference in a unified way.

5.4 The Impact of Different Propagation Layer
Depth L and Detailed Model Analysis.

As introduced in Section 4, the number of GCN layers will has
a big impact on the model performance. Therefore, we conduct
additional experiments to verify its impact. Corresponding results
are illustrated in Tables 4 and 5. From the results, we can obtain that
with the increasing number of GCN layers in the teacher model,
the overall performance first rises and then falls. When the number
of GCN layers is 2 or 3, PGD achieved the best performance. The
possible reason is that with the increasing number of GCN layers,
each node could aggregate more neighbors’ information, which not
only alleviate the data sparsity problem, but also gather more useful
information for node embedding learning. On the other hand, too
many GCN layers in the teacher model will cause the student hard
to follow and node feature over smoothing problem. Therefore, we
select 2 or 3 as the GCN layer number in teacher model according
to tasks and datasets.

The above analysis shows that PGD can distill knowledge at the
output layer. Intuitively, applying distillation operations to each
layer seems to get better performance. We conduct experiments to
compare the effects of the two distillation methods in Table 6. At 2
layer, multi-layer distillation has a little improved effect on task2
of the yelp dataset. However, there is no general enhancement but
still competitive against baselines on the other tasks. We speculate
the reason is that, there is still a gap between the intermediate layer
embedding distillation and the final output embedding distillation.
Our model is not a direct node-to-node distillation between teacher
graph and student graph, and the final entity embedding of the
student model fuses the attribute node information. Multi-layer
distillation only relies on the weighted sum operation which does
not capture well the positive impact of the distillation of the first
layer on the final output distillation.

5.5 Ablation Study
In the previous parts, we have illustrated the superiority of our pro-
posed PGD. However, the student model tries to distill knowledge
from teacher model with three constraints (i.e., user embedding
constraint, item embedding constraint, and prediction constraint),
which component plays a more important role in user preference
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Table 2: HR@K and NDCG@K comparisons for Yelp and Amazon-Video Games. ’-’ represents unavailable result.

Model Metrics Yelp(Task1) Yelp(Task2) Yelp(Task3) Amazon-Video Games
(Task2)

@10 @20 @50 @10 @20 @50 @10 @20 @50 @10 @20 @50

KNN HR 0.01810 0.03104 0.05655 0.01590 0.02775 0.06126 - - - 0.001270 0.001898 0.008407
NDCG 0.01528 0.02067 0.02917 0.009864 0.01370 0.02219 - - - 0.0007551 0.0009667 0.002447

LinMap HR 0.02030 0.03220 0.05784 0.02011 0.03436 0.06640 0.01286 0.02480 0.05108 0.01833 0.02491 0.03911
NDCG 0.01724 0.02231 0.03076 0.01277 0.01743 0.02561 0.007353 0.01124 0.01792 0.008335 0.009481 0.01333

xDeepFM HR 0.01984 0.03234 0.05973 0.02024 0.03491 0.06678 0.01310 0.02438 0.04898 0.01847 0.02498 0.03900
NDCG 0.01613 0.02147 0.03054 0.01280 0.01752 0.02564 0.007516 0.01120 0.01772 0.008253 0.009465 0.01295

CDL HR 0.01930 0.03257 0.06041 0.01959 0.03410 0.06536 0.01268 0.02001 0.04211 0.02023 0.02775 0.04192
NDCG 0.01603 0.02161 0.03082 0.01209 0.01673 0.02472 0.008057 0.01049 0.01613 0.009470 0.01112 0.01439

DropoutNet HR 0.02006 0.03278 0.06029 0.01731 0.02821 0.05594 0.01143 0.02141 0.04297 0.01143 0.01612 0.02876
NDCG 0.01675 0.02208 0.03121 0.01052 0.01411 0.02049 0.006913 0.009972 0.01547 0.005350 0.006693 0.009857

Heater HR 0.02055 0.03365 0.05880 0.02443 0.04179 0.07974 0.01226 0.02440 0.04915 0.02032 0.02659 0.04101
NDCG 0.01726 0.02271 0.03110 0.01495 0.02059 0.03027 0.007329 0.01131 0.01780 0.009280 0.01031 0.01334

PinSage HR 0.01985 0.03302 0.06250 0.02080 0.03704 0.07089 0.01173 0.02110 0.04097 0.02030 0.02491 0.03498
NDCG 0.01709 0.02267 0.03254 0.01331 0.01856 0.02722 0.007142 0.01013 0.01523 0.008590 0.009135 0.01157

PFD HR 0.02015 0.03318 0.05837 0.02240 0.04008 0.07955 0.01152 0.02427 0.04766 0.02187 0.02745 0.04065
NDCG 0.01716 0.02247 0.03086 0.01376 0.01948 0.02952 0.007248 0.01143 0.01758 0.009953 0.01086 0.01388

Student HR 0.01886 0.03133 0.05944 0.02290 0.03984 0.07625 0.01317 0.02540 0.05109 0.01812 0.02328 0.03457
NDCG 0.01612 0.02140 0.03074 0.01419 0.01968 0.02897 0.007294 0.01122 0.017952 0.008275 0.009040 0.01205

PGD HR↑ 0.02077 0.03404 0.06426 0.02717 0.04712 0.08856 0.01443 0.02589 0.05117 0.02240 0.02953 0.04507
NDCG↑ 0.01767 0.02323 0.03324 0.01659 0.02306 0.03366 0.008653 0.01240 0.01890 0.01008 0.01164 0.01601

Table 3: HR@K and NDCG@K comparisons for XING. ’-’ represents unavailable result. KNN cannot work for task3.

Model Metrics XING(Task1) XING(Task2) XING(Task3)
@10 @20 @50 @10 @20 @50 @10 @20 @50

KNN HR 0.002977 0.005945 0.01249 0.001345 0.002246 0.005768 - - -
NDCG 0.001586 0.002436 0.003920 0.0006946 0.0009711 0.001913 - - -

LinMap HR 0.007926 0.01483 0.02628 0.002039 0.003692 0.007225 0.001552 0.003338 0.007983
NDCG 0.004242 0.006225 0.008781 0.001047 0.001559 0.002492 0.0007650 0.001291 0.002255

xDeepFM HR 0.007733 0.01530 0.02752 0.001991 0.003892 0.007474 0.002526 0.005242 0.009932
NDCG 0.004240 0.006289 0.009048 0.0009840 0.001526 0.002450 0.0009600 0.001765 0.002794

CDL HR 0.007546 0.01469 0.02815 0.001521 0.003213 0.006708 0.002992 0.004580 0.007668
NDCG 0.004250 0.006255 0.009263 0.0008030 0.001357 0.002334 0.001479 0.001854 0.002444

DropoutNet HR 0.006997 0.01278 0.02345 0.001404 0.003784 0.007138 0.001805 0.003901 0.007610
NDCG 0.003311 0.004959 0.007376 0.0007770 0.001531 0.002458 0.0008680 0.001332 0.002222

Heater HR 0.006934 0.01524 0.02717 0.001766 0.003633 0.007661 0.002635 0.004788 0.007963
NDCG 0.003354 0.005713 0.008451 0.001061 0.001667 0.002722 0.001429 0.001704 0.002415

PinSage HR 0.004862 0.01119 0.02193 0.001646 0.003693 0.007953 0.001002 0.002315 0.003741
NDCG 0.002680 0.004436 0.006818 0.0009460 0.001610 0.002705 0.0004690 0.001046 0.001358

PFD HR 0.009043 0.01552 0.02855 0.002331 0.003877 0.007373 0.002833 0.005251 0.008742
NDCG 0.005273 0.007073 0.01005 0.001151 0.001666 0.002578 0.001300 0.001942 0.002695

Student HR 0.008985 0.01725 0.03114 0.001998 0.003734 0.007789 0.001777 0.004040 0.006881
NDCG 0.004734 0.007033 0.01015 0.0009520 0.001460 0.002506 0.0008830 0.001526 0.002144

PGD HR↑ 0.01149 0.02204 0.04060 0.002539 0.004216 0.008276 0.003999 0.006727 0.01018
NDCG↑ 0.006522 0.009160 0.01330 0.001322 0.001758 0.002780 0.001694 0.002222 0.002886

Table 4: HR@20 and NDCG@20 results of ourmodel with different propagation depth 𝐿 on Yelp and Amaon-Video Games (We
fix the same gcn layer 𝐿 of student model and teacher model).

Num. of GCN Layers Yelp(Task1) Yelp(Task2) Yelp(Task3) Amazon Video Games
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

𝐿 = 1 0.03365 0.02294 0.04541 0.02239 0.02467 0.01142 0.02946 0.01125
𝐿 = 2 0.03404 0.02323 0.04606 0.02255 0.02589 0.01240 0.02953 0.01164
𝐿 = 3 0.03355 0.02186 0.04712 0.02306 0.02577 0.01198 0.02801 0.01124
𝐿 = 4 0.03225 0.02102 0.04693 0.02298 0.02533 0.01192 0.02707 0.01104
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Table 5: HR@20 and NDCG@20 results of our model with different propagation depth 𝐿 on XING (We fix the same gcn layer
𝐿 of student model and teacher model).

XING(Task1) XING(Task2) XING(Task3)Num. of GCN Layers HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20
𝐿 = 1 0.02071 0.008274 0.004003 0.001754 0.006107 0.001962
𝐿 = 2 0.02107 0.009037 0.004216 0.001758 0.006727 0.002222
𝐿 = 3 0.02204 0.009160 0.003992 0.001752 0.006439 0.002100
𝐿 = 4 0.02176 0.008947 0.003907 0.001672 0.006359 0.002054
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Figure 3: NDCG@20 results of our model with different hyper-parameters.

Table 6:HR@20 andNDCG@20 results of output distillation
and multi-layer distillation.

Metrics 2-Layer Output 2-Layer Multi-Layer

Yelp(Task1) HR@20 0.03404 0.03415
NDCG@20 0.02323 0.02152

Yelp(Task2) HR@20 0.04606 0.04627
NDCG@20 0.02255 0.02302

Yelp(Task3) HR@20 0.02589 0.02638
NDCG@20 0.01240 0.01205

Amazon HR@20 0.02953 0.02812
NDCG@20 0.01164 0.01113

modeling is still unclear. To this end, we conduct an ablation study
on parameters {𝜆, 𝜇, 𝜂} to verify the impact of each component with
NDCG@20. When verifying the effectiveness of one constraint, we
fix other two parameters and modify the corresponding weight to
obtain the results. Figure 3 reports the corresponding results, from
which we can obtain the following observations.

With the increase of each component, model performance first
increases and then decreases. The distillation loss constraint has a
negative impact on the teacher model when the distillation loss is
overweight. Moreover, when PGD achieves the best performance,
𝜆 and 𝜇 have similar values. Thus, we can conclude that the user
embedding constraint and item embedding constraint have similar
impacts on model performance. Furthermore, we can observe that
the best value for 𝜂 is very small. Since this is a top-K recommen-
dation task, the prediction constraint may have a big impact on the
final performance.

We also observed that the boosting effect of these parameters is
different for different tasks and different datasets. For instance, the
metrics of task1 in Yelp improved 2.03%, but improved 11.67% of
task2 in Yelp. We speculate the possible reason is that the types of

user attributes are less than item attributes. Thus, user attributes
cannot provide as much information as item attributes do. There-
fore, the user embedding distillation may not be as good as item
embedding distillation. As a result, item embedding constraint has
a bigger impact on the model performance.

6 CONCLUSION
In this paper, we argued that attribute information is not fully ex-
plored in cold start recommendations. Thus, we proposed a novel
privileged graph distillation model (PGD) to constrain the attribute
embedding and CF-based embedding learning in a graph manner
and leverage distillation technique to tackle the cold start recom-
mendation. In concerned details, we first introduce attributes as
nodes into user-item graph and learn attribute embedding and CF-
based embedding simultaneously. Then, we employed distillation
technique to guide PGD to learn the transformation between CF-
based embedding and attribute embedding. Thus, the student model
can learn effective user (item) embedding based on attribute infor-
mation from the teacher model. Extensive experiments on three
public datasets show the performance improvement of PGD over
state-of-the-art baselines. In the future, we plan to explore different
distillation architectures to better attribute node embedding.
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