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A B S T R A C T

Recently, researchers have argued that the impressive performance of Natural Language Inference (NLI) models
is highly due to the spurious correlations existing in training data, which makes models vulnerable and poorly
generalized. Some work has made preliminary debiased attempts by developing data-driven interventions or
model-level debiased learning. Despite the progress, existing debiased methods either suffered from the high
cost of data annotation processing, or required elaborate design to identify biased factors. By conducting
detailed investigations and data analysis, we argue that label information can provide meaningful guidance to
identify these spurious correlations in training data, which has not been paid enough attention. Thus, we design
a novel Label-aware Debiased Causal Reasoning Network (LDCRN). Specifically, according to the data analysis,
we first build a causal graph to describe causal relations and spurious correlations in NLI. Then, we employ
an NLI model (e.g., RoBERTa) to calculate total causal effect of input sentences to labels. Meanwhile, we
design a novel label-aware biased module to model spurious correlations and calculate their causal effect in a
fine-grained manner. The debiasing process is realized by subtracting this causal effect from total causal effect.
Finally, extensive experiments over two well-known NLI datasets and multiple human-annotated challenging
test sets are conducted to prove the superiority of LDCRN. Moreover, we have developed novel challenging
test sets based on MultiNLI to facilitate the community.
1. Introduction

Existing Natural Language Understanding (NLU) problems can be
formulated as text classification tasks, in which Natural Language
Inference (NLI) is one of the representative tasks. NLI requires an agent
to determine the inference relation from premise sentence to hypothesis
sentence (Bowman et al., 2015; Zhang et al., 2019). Enormous work
has been designed in this field, such as ESIM (Peters et al., 2018),
DRr-Net (Zhang et al., 2019), and SemBERT (Zhang et al., 2020c).
They have achieved impressive performance, even surpassing human
performances on some metrics.

However, existing studies (Gururangan et al., 2018; Poliak et al.,
2018; Naik et al., 2018; McCoy et al., 2019; Shah et al., 2020) argue
that current NLI models are overestimated. The impressive performance
mainly dues to the dependency of annotation bias or spurious correlation.
As shown in Fig. 1, specific language patterns can be used to identify
specific semantic relations (e.g., negation in hypothesis sentence is
often correlated with a Contradiction label). This phenomenon is called
language bias (Gururangan et al., 2018). Gururangan et al. (2018) have
pointed out that annotators preferred to use these language biases to
generate NLI data. Moreover, Naik et al. (2018) have proved that NLI

∗ Corresponding author at: School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, 230601, Anhui, China.
E-mail address: zhang1028kun@gmail.com (K. Zhang).

models would be misled by these spurious correlations and incorrectly
exploit these language patterns (e.g., negation, antonymy, and word
overlap) for inference relation prediction.

To investigate how language bias affects the model capability, we
conduct a data analysis on the well-known SNLI (Stanford Natural
Language Inference) dataset. As reported in Table 1, we fine-tune three
PLMs with SNLI training data, and directly apply them to different
test sets with different input settings. Here, hard test set removes
those samples that can be accurately classified using only hypothesis
sentences. From the results, all models have impressive performance
when using both premise and hypothesis sentences (NLI task setting).
When using only one of sentences (bias settings) as input, things become
different. When using only premise sentences, performances over test
and hard test sets are similar to random guessing, which is as expected
since NLI requires an agent to determine the relation between two
sentences. However, when it comes to only hypothesis sentences, the
performance over test set is better than it over hard test set, and
better than random guessing (i.e., 48.23% v.s. 31.85% on average).
This phenomenon demonstrates the misuse of these models for spurious
correlations among input data. Meanwhile, Swayamdipta et al. (2020)
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Fig. 1. Some NLI examples from SNLI dataset and corresponding commonly used words for specific language bias. E.g., (Negation) denotes the specific language bias type.
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Table 1
Accuracy (%) of PLMs with different input settings on SNLI test and hard test sets (Prem.
enotes that only premise sentence is used as the model input). SimCSE_B denotes using
ERT as the backbone encoder.
Model ALL Prem. Hypo.

Test Hard Test Hard Test Hard

BERT 88.6 79.5 31.9 31.1 44.7 31.2
RoBERTa 90.0 82.5 32.1 32.7 47.0 32.9
SimCSE_B 86.9 76.0 32.4 27.3 53.9 30.3
SimCSE_R 88.7 82.3 32.5 29.3 47.3 33.0

Avg. 88.55 80.08 32.23 30.10 48.23 31.85

performed a similar analysis to prove that biased/cheating features
are used by models to achieve high performance. To this end, we can
conclude that these spurious correlations will mislead models to make
a shortcut by learning these patterns, resulting in vulnerable and poorly
generalized performance.

To remove the negative impact of spurious correlations among
input data, plenty of debiasing strategies have been proposed. For
example, Liu et al. (2022) produced novel WANLI data via targeted
augmentations to remove spurious correlations from the data-level per-
spective. Kaushik et al. (2020) designed a human-in-the-loop system,
where annotators were asked to generate counterfactual samples for
input data. Apart from data-level manipulations, model-level causality
analyses are also proposed, in which causal inference (Pearl et al.,
2016) is one of the promising directions. For example, Niu et al.
(2021) focused on language bias in Visual Question Answering (VQA)
and treated it as the direct causal effect of questions on answers.
Therefore, the debiased learning can be achieved by employing Average
Treatment Effect (ATE) to remove direct causal effect from total causal
effect in VQA. Qian et al. (2021) proposed a model-agnostic debiasing
framework, in which a biased model was trained on original training
data, and two counterfactual inputs were designed to achieve bias
distillation from the biased model.

Despite the impressive performance, these methods are still far
from satisfactory. Typically, these methods achieved debiased learning
by directly pre-defining the bias types (e.g., pre-defined document-
level bias and word-level bias in the most related work Qian et al.
(2021)). These heuristic methods lack flexibility and persuasiveness.
By revisiting the data annotation process (Gururangan et al., 2018;
Bowman et al., 2015) and conducting detailed data analysis, we argue
that labels can provide essential information for debiased learning of
NLI models, which has not been given enough attention. Therefore,
our primary focus turns into the problem: How to model biased
information correlated with labels and how to remove it from NLI
models for debiased learning.

To this end, we propose to exploit the potential of labels and
design a novel model-agnostic Label-aware Debiased Causal Reasoning
Network (LDCRN) from a causal-effect perspective. Specifically, based
on data analysis, we pinpoint the spurious correlation between hy-
pothesis sentences and inference relations, and argue that labels are
helpful to identify spurious correlations. Thus, we first build a causal
71
graph (Pearl et al., 2000) (Fig. 2(B)) to describe causal connections
and spurious correlations in NLI data. Then, we leverage conventional
NLI models (e.g., RoBERTa Liu et al., 2019) to realize biased learn-
ing from training data. Next, we answer the counterfactual question:
‘‘What would the inference relation be if premise sentence is unavailable?’’
by designing a scenario in which only hypothesis sentences can be
accessed. Meanwhile, to identify spurious correlations correctly, we
propose to treat labels as exogenous variables and design a novel label-
aware biased module to measure the spurious correlations. After that,
the debiased inference is achieved by removing the causal effect of
spurious correlations from the total causal effect learned by biased
models. Finally, we conducted extensive experiments over two well-
known NLI datasets and multiple challenging test sets to demonstrate
the superiority of our proposed LDCRN. Moreover, we have developed
two novel challenging test sets over the MultiNLI dataset to facilitate
the community.1

2. Related work

This section is organized as follows: we first introduce the related
work from two aspects. Then, we conclude the distinction of our work.

Data-driven Interventions. Researchers argued that current data-
riven NLU models tended to learn more about the language bias
ather than adequately learning the intended task (Poliak et al., 2018;
aik et al., 2018; McCoy et al., 2019; Shah et al., 2020; Liu et al.,
020; Xiong et al., 2021; Wei et al., 2022; Wu and Gui, 2022; Qi
t al., 2023; Qiang et al., 2023). Thus, plenty of data-driven inter-
entions are proposed to realize debiasing from a data perspective.
or example, Tsuchiya (2018) conducted lab experiments to prove
hat existing NLI corpora have a hidden bias that would mislead NLI
odels to make predictions based on only hypothesis sentences. Naik

t al. (2018) and McCoy et al. (2019) developed challenging test sets
ontaining elaborately designed samples that are inconsistent with
anguage biases. By injecting them into original data, the dependence
n spurious patterns of models can be effectively alleviated. Zhang et al.
2020a) designed a new unified cross-datasets benchmark with 14 NLI
atasets for trustworthy generalization performance evaluation. Nie
t al. (2020) designed an iterative, adversarial human-and-model-in-
he-loop solution for NLU dataset collection that addressed benchmark
ongevity and robustness issues. Liu et al. (2022) produced a WANLI
orpus via targeted augmentations to remove the spurious correlations
ccording to observations in Swayamdipta et al. (2020). Wang and
ulotta (2020) proposed to train a robust text classifier by augmenting
he training data with automatically generated counterfactual data.
chlegel et al. (2020) summarized and analyzed the heuristics and
purious correlations in datasets, as well as the shortcomings of ex-
sting sentence-matching methods. Meanwhile, Despite the progress,
hese data-level solutions still suffer from high-cost problems, such as
dditional manual annotations.

1 https://github.com/little1tow/MultiNLI-Hard-Test.

https://github.com/little1tow/MultiNLI-Hard-Test
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Fig. 2. (A) Causal graph and counterfactual notations. 𝑋,𝑀 , and 𝑌 denote causal, mediator, and effect variables. Gray nodes are at 𝑋 = 𝑥∗. (B.a) Commonly used debiased NLI
causal graph. (B.b) Our designed causal graph.
r

Causal Inference-based Debiasing. To tackle the shortcoming of
data-level solutions, model-level debiasing methods were proposed,
such as adversarial training methods (Chai et al., 2022; Qiu et al., 2023)
and ensemble-based methods (Karimi Mahabadi et al., 2020; Ghaddar
et al., 2021). Among them, integrating causal inference is one repre-
sentative direction. Causal inference aims at obtaining the causality
among treatment (input) and effect (output) (Pearl et al., 2000, 2016),
and has become an important tool in medicine (Konigorski, 2021),
neuroscience (Marinescu et al., 2018), cognitive science (Shams and
Beierholm, 2010), etc. Recently, researchers have also demonstrated
that causal inference can be used to help models remove data biases,
improving model robustness and generalization (Utama et al., 2020;
Qian et al., 2021; Niu et al., 2021; Ghaddar et al., 2021; Dai et al.,
2022; Wu et al., 2022; Sun et al., 2022; Chen et al., 2023).

For example, Niu et al. (2021) focused on visual question answering
and developed a counterfactual framework, where language bias was
treated as direct causal effect of questions on answers and subtracted
from total causal effect for unbiased learning. Choi et al. (2022) pro-
posed identifying causal terms and non-causal terms by calculating the
causal ‘‘treatment’’ effect of words on labels, so that better sentence
augmentations can be obtained to enhance contrastive learning. Qian
et al. (2021) focused on label bias and keyword bias in text classifi-
cation. They developed a CORSAIR model, where two counterfactual
counterparts on inputs were designed to distill and mitigate the biases
from a base model. Zhang et al. (2020b) formulated unintended biases
in text classification as a kind of selection bias, and proposed to use in-
stance weighting to alleviate the selection bias and constrain the model
generalization ability. Gao et al. (2023) incorporated causal inference
to analyze the causes of dataset bias. Then, they designed a novel
CausalAPM method to project literal and semantic information into
independent feature subspaces, and constrain the involvement of literal
information in subsequent predictions. Joshi et al. (2022) and Zhou
et al. (2023) conducted a detailed analysis about the spurious features
in natural language. By reconsidering feature types and training stages,
these two works provided a better explanation about the capability
of existing debiasing methods and guidance of the debiased learning
in natural language. Moreover, Feder et al. (2022) investigated the
potential of causal inference to improve the robustness, fairness, and
interpretability of NLP models, demonstrating the importance of causal
inference. Kıcıman et al. (2023) also pointed out that integrating causal
reasoning and LLMs will open a new research frontier.

Our distinction: Existing causal inference-based debiasing methods
usually pre-defined bias types (Qian et al., 2021) and develop heuristic
strategies to realize debiased learning. As a comparison, our method has
the following advantages. Firstly, inspired by the works (Joshi et al.,
2022; Zhou et al., 2023), we conduct a detailed data analysis (Fig. 1
and Table 1) to better recognize what spurious correlations are and
72

how they affect model performance, which is also the construction
basis of our causal graph. Second, we propose that labels can help
identify spurious correlations and develop a novel label-aware biased
module to conduct fine-grained modeling. Therefore, models learned
from observed biased data can be debiased at a minimal cost regarding
prediction accuracy reduction. Third, we also design novel challenging
test sets based on MultiNLI to facilitate the community.

3. Label-aware Debiased Causal Reasoning Network (LDCRN)

In this section, we first present basic concepts of causal inference.
Then, we give technical details of LDCRN in a causal effect view.

3.1. Preliminary

Causal Graph is denoted by a Directed Acyclic Graph (DAG):  =
⟨ , ⟩, where  and  represent the set of variables and causality
elations among variables. As shown in Fig. 2(A.a), 𝑋 → 𝑌 shows that

variable 𝑋 has direct effect on variable 𝑌 . 𝑋 → 𝑀 → 𝑌 is that 𝑋
has indirect effect on 𝑌 , where 𝑀 is the mediator. For simplicity, when
assigning 𝑋 = 𝑥 in Fig. 2(A.b), variable 𝑌 can be abbreviated as follows:

𝑚 = 𝑀𝑥 = 𝑀(𝑋 = 𝑥),

𝑌𝑥,𝑚 = 𝑌 (𝑋 = 𝑥,𝑀 = 𝑚).
(1)

Counterfactual notations are used to translate causal assumptions
from graphs to formulations (Niu et al., 2021). As shown in Fig. 2(A.d),
variable 𝑋 has direct effects on 𝑀 . Therefore, in a factual world,
when assigning 𝑋 = 𝑥, 𝑀 will also be affected (𝑀(𝑋 = 𝑥)). In the
counterfactual world, 𝑋 will be simultaneously assigned two different
values 𝑥 and 𝑥∗. Consequently, variable 𝑌 will obtain the counterfactual
result 𝑌𝑥,𝑀𝑥∗

, in which the causal path 𝑋 → 𝑀 has been blocked.
Causal effects are the comparison between two potential outcomes

of the same individual given two different treatments (Rubin, 2005).
Assuming that 𝑋 = 𝑥 is the ‘‘treatment’’ and 𝑋 = 𝑥∗ is the ‘‘no-
treatment’’, the Total Effect (TE) of treatment 𝑋 = 𝑥 on 𝑌 can be
formulated as follows:

𝑇𝐸 = 𝑌𝑥,𝑀𝑥
− 𝑌𝑥∗ ,𝑀𝑥∗

. (2)

Based on Fig. 2(A.d), TE can be decomposed into Natural Direct Ef-
fect (NDE) and Total Indirect Effect (TIE). NDE describes the change of
variable 𝑌 when 𝑋 is changed from 𝑥∗ to 𝑥 while 𝑀 is set to the value
when 𝑋 = 𝑥∗:

𝑁𝐷𝐸 = 𝑌𝑥,𝑀𝑥∗
− 𝑌𝑥∗ ,𝑀𝑥∗

. (3)

Then, TIE can be calculated by subtracting NDE from TE as follows:

𝑇 𝐼𝐸 = 𝑇𝐸 −𝑁𝐷𝐸 = 𝑌𝑥,𝑀𝑥
− 𝑌𝑥,𝑀𝑥∗

, (4)

which denotes the causal effect of 𝑋 on 𝑌 through the mediator 𝑋 →
𝑀 → 𝑌 . Next, we will introduce the utilization of this framework in
NLI and the implementation of each calculation.
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Fig. 3. The causal graph and corresponding implementation of our proposed LDCRN.
𝑊

3.2. Technical Details of LDCRN

Causal look of NLI. Fig. 2(B) illustrates the causal graph (B.a) for
traditional debiased NLI models and the causal graph (B.b) for our
designed LDCRN. In concerned details, input variable 𝑋 in Fig. 2(A)
is transferred to {𝑃 ,𝐻} in Fig. 2(B), representing the input sentence
air {𝑆𝑝, 𝑆ℎ}. Mediator variable 𝑀 in Fig. 2(A) is realized by 𝑅 and

in Fig. 2(B), where 𝑅 denotes the interactions between input sen-
ences and 𝐶 denotes our designed fine-grained mediator for spurious
orrelations. 𝐿 in Fig. 2(B.b) represents the all inference relation infor-
ation. Output variable 𝑌 here denotes the predicted inference relation

etween input sentences {𝑃 ,𝐻}. We have to note that existing methods
sually treat 𝐿 only as supervised signals 𝑌 , and we are concerned

more about the identification of labels to spurious correlations among
NLI data. Therefore, compared with existing work, we do not use
additional data.

Meanwhile, in previous debiased NLI models, {𝑃 ,𝐻} → 𝑌 rep-
resents the coarse-grained modeling of spurious correlations, which
was used to model all different language biases as one spurious cor-
relation (Poliak et al., 2018; Liu et al., 2020), lacking flexibility and
persuasiveness. As a comparison, we argue that the label information
will provide guidance when distinguishing the spurious correlations
between input sentences and inference relations. Therefore, we use
{𝐻,𝐿} → 𝐶 → 𝑌 in Fig. 2(B.b) to describe the fine-grained modeling of
LDCRN. This strategy is consistent with Fig. 1 and Table 1. For example,
in Fig. 1, negation is always connected with contradiction relation.
Word overlap is often used to recognize entailment relations. This is
also the main difference between our work and existing debiased NLI
methods. Next, following the notations in Section 3.1, we can rewrite
the causal effect calculation process of NLI models.

According to Eq. (1) and Fig. 2(B.b), when inputs are set as 𝒑 and
𝒉, the probability of inference relation can be realized by calculating
the effect 𝑌𝑝,ℎ,𝑟,𝑐 as:

𝑌𝑝,ℎ,𝑟,𝑐 = 𝑌 (𝑃 = 𝒑,𝐻 = 𝒉, 𝑅 = 𝒓, 𝐶 = 𝒄), (5)

where 𝒄 = 𝐶(𝐿 = 𝑳,𝐻 = 𝒉) is the biased mediator determined by
hypothesis sentence 𝑆ℎ and label information 𝐿. Then, Total Effect (TE)
of inputs 𝑋 = {𝑆𝑝, 𝑆ℎ} in Eq. (2) can be modified as:

𝑇𝐸 = 𝑌𝑝,ℎ,𝑟,𝑐 − 𝑌𝑝∗ ,ℎ∗ ,𝑟∗ ,𝑐∗ , (6)

where {𝑝∗, ℎ∗} denote the no-treatment condition where {𝑆𝑝, 𝑆ℎ} are
set to void, 𝑐∗ = 𝐶(𝐿 = 𝑳,𝐻 = 𝒉∗), and 𝑟∗ = 𝑅(𝑃 = 𝒑∗,𝐻 = 𝒉∗) (see
Fig. 3).

In Section 1, we have argued that labels are helpful to model
this spurious correlation. Therefore, according to Eq. (3), we intend
to calculate the causal effect of spurious correlations from 𝑆ℎ to 𝑌
with the consideration of label information 𝐿, which can be realized
by comparing the factual inference (with only 𝑆ℎ) and counterfactual
inference (even without 𝑆ℎ). Since we leverage all label information to
73

guide the modeling of spurious correlations between 𝐻 and 𝑌 , and add R
a biased mediator 𝐶 to achieve fine-grained modeling, we name this
calculation as Controlled Direct Effect (CDE) (Pearl, 2022), replacing
the original NDE:

𝐶𝐷𝐸 = 𝑌𝑝∗ ,ℎ,𝑟∗ ,𝑐 − 𝑌𝑝∗ ,ℎ∗ ,𝑟∗ ,𝑐∗ . (7)

Based on Eqs. (6) and (7), we can rewrite Eq. (4) to achieve debiased
learning as follows:

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝐶𝐷𝐸 = 𝑌𝑝,ℎ,𝑟,𝑐 − 𝑌𝑝∗ ,ℎ,𝑟∗ ,𝑐 , (8)

where 𝑇 𝐼𝐸 can be used to achieve the debiased inference relation
prediction. To this end, the problem becomes how to calculate 𝑌𝑝,ℎ,𝑟,𝑐
and 𝑌𝑝∗ ,ℎ,𝑟∗ ,𝑐 according to biased observed data.

3.3. Implementation of LDCRN

Fig. 3(b) illustrates the implementation details of our proposed
LDCRN. To realize the debiased learning, it is natural to consider PLMs
(e.g., BERT). However, two main problems should be tackled first: (1)
How to realize the counterfactual input (i.e., 𝒑∗, 𝒓∗); (2) How to model the
biased information contained in labels. Next, we introduce our designs for
these two questions and the implementations of LDCRN.

Q1: Counterfactual Input. As mentioned before, no-treatment con-
dition is defined as blocking signals from premise sentence 𝑆𝑝 (i.e., 𝑆𝑝 =
𝝓). Since neural models cannot deal with the inputs that are void,
we leverage the average representation 𝒂 of all premise sentences in
training data to replace the void inputs. This intuition makes sense as 𝒂
can provide data-specific information, which can be treated as the prior
knowledge for learning models. One step further, we have compared
different settings of 𝒂 for better illustration in Section 4.

Q2: Label-aware Biased Module. We argue that labels can help
to model spurious correlations caused by language bias. Therefore, we
propose to leverage those words that have strong correlations with la-
bels to measure the biased information contained in labels. Considering
that word frequency will select the same words for different labels and
lack differentiation, we leverage Pointwise Mutual Information (PMI)
to select the most relevant Top-K words for each label as follows:

𝑃𝑀𝐼(𝑤𝑗 , 𝑙𝑖) = 𝑙𝑜𝑔
𝑝(𝑤𝑗 , 𝑙𝑖)

𝑝(𝑤𝑗 , ⋅) ⋅ 𝑝(⋅, 𝑙𝑖)
,

𝑖 =𝑇 𝑜𝑝𝐾({𝑃𝑀𝐼(𝑤𝑗 , 𝑙𝑖)}), 𝑗 = {1, 2,… , 𝑚},
(9)

where 𝑝(𝑤𝑗 , 𝑙𝑖) denotes the co-occurrence of word 𝑤𝑗 and label 𝑙𝑖. 𝑚 is
the number of words. Then, we formulate the biased information 𝒍𝑖 for
𝑖th label as the average embedding of corresponding Top-K words. After
that, we stack biased information of all labels together as the matrix 𝑳
to denote the biased information from all labels:

𝑳 = {𝒍1, 𝒍2,… , 𝒍𝑛}, 𝒍𝑖 =
1
𝑘

∑

𝑤𝑗∈𝑊𝑖

𝑃𝐿𝑀(𝑤𝑗 ), (10)

where 𝑛 is the number of labels. 𝑃𝐿𝑀(⋅) denotes using PLM (e.g., BERT,

oBERTa) to obtain the embedding of the selected words.
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Table 2
The statistics of test datasets we used. Note that Hans (McCoy et al., 2019) dataset has
two categories (Entailment and Non-Entailment).

Dataset E N C All

SNLI 1058 1068 1135 3261
Matched 1170 1154 925 3249
Mismatched 1147 1077 990 3214
RP&RH 508 554 538 1600
Hans 15,000 15,000 30,000

Parameterization. Similar to previous work (Niu et al., 2021), we
everage two neural models 𝐹𝑝,ℎ,𝑟(⋅) and 𝐹ℎ,𝑐 (⋅), as well as one fusion

function 𝐺(⋅) to parameterize Eq. (5) as follows:

𝑌𝑝,ℎ,𝑟 = 𝐹𝑝,ℎ,𝑟(𝒑,𝒉), 𝑌ℎ,𝑐 = 𝐹ℎ,𝑐 (𝒉,𝑳),

𝑌𝑝,ℎ,𝑟,𝑐 = 𝐺(𝑌𝑝,ℎ,𝑟, 𝑌ℎ,𝑐 ),
(11)

where 𝑌𝑝,ℎ,𝑟 describes the interaction path (i.e., (𝑃 ,𝐻) → 𝑅 → 𝑌 ) and
𝑌ℎ,𝑐 describes the language bias path (i.e., (𝐿,𝐻) → 𝐶 → 𝑌 ). 𝐹 (⋅) can
be any representation learning model, such as BERT, RoBERTa, and
SimCSE.

After obtaining results, we intend to use the combination of 𝑌𝑝,ℎ,𝑟
and 𝑌ℎ,𝑐 to make the final prediction. Therefore, two different fusion
strategies, Concatenation (CON) and SUM, are considered:

(𝐶𝑂𝑁) ∶𝐺(𝑌𝑝,ℎ,𝑟, 𝑌ℎ,𝑐 ) = [𝑌𝑝,ℎ,𝑟; 𝑌ℎ,𝑐 ],

(𝑆𝑈𝑀) ∶𝐺(𝑌𝑝,ℎ,𝑟, 𝑌ℎ,𝑐 ) = 𝑌𝑝,ℎ,𝑟 + 𝑌ℎ,𝑐 .
(12)

Training and Inference. Following Multi-task learning, we require
that each path can make correct predictions. Therefore, a softmax layer
is used to process results from each path. Cross-entropy is used to
optimize learning models. To this end, the optimization target can be
formulated as follows:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠1 + 𝜆𝐿𝑜𝑠𝑠2 + (1 − 𝜆)𝐿𝑜𝑠𝑠3, (13)

where {𝐿𝑜𝑠𝑠1, 𝐿𝑜𝑠𝑠2, 𝐿𝑜𝑠𝑠3} are Cross-Entropy loss over 𝑌𝑝,ℎ,𝑟,𝑐 , 𝑌𝑝,ℎ,𝑟,
and 𝑌ℎ,𝑐 . 𝜆 is the hyper-parameter to balance the impacts of different
components. After finishing model training, we leverage Total Indirect
Effect (TIE) for inference relation prediction on test sets and rewrite
Eq. (8) as:

𝑇 𝐼𝐸 = 𝑇𝐸 −𝐷𝐸 = 𝑌𝑝,ℎ,𝑟,𝑐 − 𝑌𝑝∗ ,ℎ,𝑟∗ ,𝑐 = 𝐺(𝑌𝑝,ℎ,𝑟, 𝑌ℎ,𝑐 ) − 𝐺(𝑌𝑝∗ ,ℎ,𝑟∗ , 𝑌ℎ,𝑐 ).

(14)

4. Experiments

In this section, we first introduce the experimental settings. Next,
we report results and detailed analyses of models and results. Accuracy
(%) on different test sets is selected as the evaluation metric. Boldface
and underline are used to denote the best and the second-best results.

4.1. Experimental settings

Datasets. We select SNLI and MultiNLI to verify the model per-
formance. Moreover, multiple challenging test sets are employed to
verify the model performance on debiased NLI targets, including SNLI
hard (Gururangan et al., 2018), Hans (McCoy et al., 2019), and RP&RH
test sets (Kaushik et al., 2020). We also develop two novel challenging
test sets based on MultiNLI for debiased NLI performance evaluation.
Table 2 summarizes the statistic information of these datasets.

Challenging test sets construction. We follow SNLI hard set (Gu-
urangan et al., 2018) to process the MultiNLI data. Specifically, we first
rain 𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒 on MultiNLI data with only the hypothesis sentences.
hen, we select the samples with low prediction confidence on the
atched and mismatched test sets. The corresponding threshold is set
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s 0.35. Along this line, those selected samples cannot be correctly C
Table 3
Performance (Accuracy) of trained 𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒 on MultiNLI test sets and challenging test
sets.

Matched Mismatched

Original 59.5 59.5
Challenging 13.6 12.4

predicted with only hypothesis sentences and are used to make up
the challenging test sets. The performance of trained 𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒 on the
riginal test sets and our constructed challenging test sets is reported
n Table 3.
Baseline. To make a comprehensive comparison, we select two

ypes of baselines. (1) Traditional representation learning methods:
imCSE (Gao et al., 2021), SNCSE (Wang et al., 2022); (2) Debi-
sed representation learning methods: Reweight (Clark et al., 2019),
earned-Mixin (LM) (Clark et al., 2019), and CORSAIR (Qian et al.,
021).
Model Implementation. We tune hyper-parameters on the offi-

ial validation set and use Early Stop to determine the best values.
nd we list some common hyper-parameter settings. For the encoder,
e select the commonly used pre-trained language models: BERT-
ase-uncased and RoBERTa-base. For hyper-parameter settings,

he batch size is 64. The learning rate is 𝑙𝑟 = 0.00003. The 𝜆 in Eq. (13)
s set as 0.5. For fusion strategy, we select 𝐶𝑂𝑁 as the final strategy.
dditionally, we implement a linear learning rate warm-up for 1000
teps and set the weight decay to 0.05.

.2. Overall experiments

Debiased NLI performance. As mentioned in Sections 1 and 3,
he debiased learning tries to remove the effect of shortcut usage in
he model learning process, which will harm the model performance
n the original test set. Therefore, our target is to improve the model
obustness (i.e., performance on challenging test sets) at the minimal
ost of accuracy loss on the original test sets. With this consideration,
e report the overall results on SNLI and MultiNLI datasets in Table 4
nd summarize the observations as follows:

Among all debiased models, LM and LM-H achieve impressive de-
iasing performances on hard test sets, demonstrating their capability
f debiased learning. However, their performance on original test sets
rops significantly (e.g., an average 4.0% decrease with BERT). In
ther words, these works focus too much on debiased learning and
istakenly discard some useful features. On the contrary, Reweight

nd CORSAIR achieve impressive performance on original test sets.
owever, their performances on hard test sets are not good enough.
ince their debiased modules are elaborately designed for pre-defined
ias types, these two models have some weaknesses in generalization.
ompared with these debiased models, LDCRN achieves comparable
erformance on all hard tests. Moreover, the performance on original
est sets shows almost no degradation and in some cases even has an
mprovement (e.g., performance on MultiNLI matched test set). The
henomenon proves the superiority of LDCRN. By building an accu-
ate causal graph and designing a novel label-aware biased module,
DCRN can model the spurious correlations in a fine-grained manner,
nd achieve debiased learning at a minimal cost in terms of prediction
ccuracy reduction, realizing the target of this work.

Moreover, we employ more challenging test sets (McCoy et al.,
019; Naik et al., 2018) to verify the effectiveness and robustness of
DCRN and report results in Tables 5 and 6. From these results, we list
ur observations as follows:
Performance on Challenging test sets. First of all, we can obtain

imilar performance on baseline methods. LM-H method achieves im-
ressive debiased learning with the cost of a large reduction in accuracy
n some simple categories (e.g., ‘‘entailment’’ in Han test). Reweight and
ORSAIR still have inflexibility and poor generalization in dealing with
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Table 4
The comparison of Accuracy (%) on different NLI test sets. (+2.67%) means the accuracy improvement of LDCRN compared with baseline BERT([CLS]) is 2.67%.

PLMs Methods SNLI MultiNLI_matched MultiNLI_mismatched

Test Hard Test Hard Test Hard

BERT

[CLS] 88.6 79.5 83.8 70.4 84.5 71.3
first-last avg. 87.6 78.2 82.5 67.7 82.4 67.6
+SimCSE 88.1 78.6 81.9 67.5 82.6 69.5
+SNCSE 88.0 79.0 82.5 68.4 82.6 68.9
+Reweight 88.9(+0.34%) 80.8(+1.64%) 84.2(+0.48%) 71.1(+0.99%) 84.1(−0.47%) 71.6(+0.42%)
+LM 84.6(−4.51%) 82.7(+4.03%) 81.1(−3.22%) 77.3(+9.80%) 81.1(−4.02%) 76.9(+7.85%)
+LM-H 84.5(−4.63%) 83.3(+4.78%) 80.5(−3.94%) 76.5(+8.66%) 80.6(−4.62%) 76.6(+7.43%)
+CORSAIR 88.7(+0.11%) 80.0(+0.63%) 83.9(+0.12%) 71.4(+1.42%) 84.1(−0.47%) 71.7(+0.56%)
+LDCRN 88.6(+0.00%) 81.4(+2.39%) 84.2(+0.48%) 72.0(+2.27%) 83.9(−0.07%) 71.6(+0.42%)

RoBERTa

[CLS] 90.0 82.5 87.4 76.1 87.3 75.8
first-last avg. 88.5 79.8 86.0 75.0 86.0 75.0
+SimCSE 89.0 80.2 86.2 74.8 86.1 75.3
+SNCSE 89.0 80.4 86.2 74.9 86.1 75.1
+Reweight 89.8(−0.22%) 82.1(−0.48%) 87.5(+0.11%) 76.5(+0.53%) 87.2(−0.11%) 76.4(+0.79%)
+LM 88.7(−1.44%) 84.4(+2.30%) 86.8(−0.69%) 80.7(+6.06%) 86.9(−0.46%) 81.1(+6.99%)
+LM-H 88.9(−1.22%) 84.7(+2.67%) 86.8(−0.69%) 80.5(+5.78%) 87.0(−0.34%) 81.1(+6.99%)
+CORSAIR 89.5(−0.56%) 82.8(+0.36%) 86.2(−1.37%) 76.0(−0.13%) 86.4(−1.03%) 76.3(+0.66%)
+LDCRN 89.8(−0.22%) 83.4(+1.09%) 87.6(+0.23%) 78.1(+2.63%) 87.2(−0.11%) 78.8(+3.96%)
o
o
o
a

e
c
M
t
o
t
r

c
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d
g
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Table 5
Accuracy (%) on challenging Hans (McCoy et al., 2019) (2-class classification)
and RP&RH (Kaushik et al., 2020) (3-classification) test sets. ‘‘NE’’ denotes
non-entailment.

PLMs Method Hans RP&RH

Overall E NE Overall E N C

BERT

[CLS] 57.9 96.1 19.7 70.2 75.2 64.1 71.7
Reweight 52.7 99.2 6.2 73.1 75.2 67.9 76.6
LM-H 56.5 92.0 21.1 77.8 81.3 73.1 79.2
CORSAIR 57.8 96.2 19.3 70.5 78.9 61.0 72.3
LDCRN 53.5 97.4 9.6 73.1 79.9 63.5 76.4

RoBERTa

[CLS] 67.3 99.0 35.7 75.3 79.1 68.2 78.6
Reweight 71.0 98.9 43.1 74.3 78.1 68.4 76.6
LM-H 72.8 97.7 47.9 78.1 81.5 71.1 82.2
CORSAIR 69.5 98.2 40.8 75.0 76.6 71.8 76.8
LDCRN 74.2 98.6 49.5 75.8 82.3 65.9 79.9

different types of biased information due to their elaborately designed
debiased modules.

Meanwhile, LDCRN still achieves comparable performance on all
test sets with a minimal cost in terms of simple categories accuracy
reduction. According to Table 6, we can observe that LDCRN enhances
the backbone’s performance in nearly all aspects. Notably, antonymy,
numerical reasoning, and word overlap are the aspects most influenced
by our approach. All these results provide strong support for the
superiority of our proposed LDCRN.

Performance on Different Backbones. For backbone encoders,
we can observe that using RoBERTa as the backbone achieves better
performance than BERT. LDCRN also achieves the best performance
on Hans test set with RoBERTa. This observation proves that choos-
ing better backbones is a promising direction for model performance
improvement. Meanwhile, we also observe that SimCSE and SNCSE do
not achieve the expected performance after fine-tuning. One possible
reason is that these methods have already been fine-tuned. It is difficult
to use additional fine-tuning to further improve the performance, which
might even damage the learned parameters.

4.3. Ablation study

The overall experiments have demonstrated the effectiveness of our
proposed LDCRN. However, it is still unclear which part plays a more
critical role in performance improvement. Therefore, we conduct abla-
tion studies on different components to answer this question. Results
are summarized in Table 7.
75

b

Fig. 4. Sensitive test of 𝜆 on SNLI Hard Test set.

For fusion strategies: 𝐶𝑂𝑁 strategy achieves the best performance
n hard test set, while 𝑆𝑈𝑀 strategy has the best performance on the
riginal test set. By comparing with the accuracy of each label, we can
btain that 𝐶𝑂𝑁 strategy leads to a large improvement in entailment
nd contradiction relations on hard tests. Moreover, 𝐶𝑂𝑁 strategy can

keep the learned information as much as possible. These are all helpful
for models to distinguish causality from spurious patterns and realize
better debiased model learning.

For the accuracy in each category: we can observe that mod-
ls have a relatively small performance decrease on entailment and
ontradiction relations when conducting evaluations on hard test set.
eanwhile, model performance has a big drop when dealing with neu-

ral relation. Therefore, its accuracy has the most significant impact on
verall performance. From the results, our proposed LDCRN achieves
he least decrease in accuracy on neutral relation, which explains the
eason why LDCRN can achieve optimal debiased learning.
For different components: we compare the modules of different

ausal effect calculations (i.e., 𝐿𝑜𝑠𝑠3 for 𝑌ℎ,𝑐 and 𝐿𝑜𝑠𝑠2 for 𝑌𝑝,ℎ,𝑟),
nd the label-aware biased information 𝐿. According to Table 7(5-
), 𝑌ℎ,𝑐 has a bigger impact on the debiased performance. Since 𝑌ℎ,𝑐
escribes the spurious correlations (i.e., (𝐿,𝐻) → 𝐶 → 𝑌 ) in causal
raph, removing it will degrade LDCRN to a conventional NLI model,
imiting the debiasing capability of LDCRN. Meanwhile, 𝐿 describes the
iased information associated with all labels. Removing 𝐿 results in a
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Table 6
Results on stress test datasets with different backbones.

Method Competence test Distraction test Noise test

Antonymy Numerical Word overlap Negation Length mismatch Spelling error

Mat Mis Reasoning Mat Mis Mat Mis Mat Mis Mat Mis

BERT 56.0 48.8 33.7 57.6 57.0 54.9 55.4 80.8 82.0 77.3 77.2
+LDCRN 57.3 51.2 41.3 61.5 60.6 54.7 55.1 81.6 81.8 78.0 78.3
RoBERTa 63.7 60.7 47.0 64.2 64.2 55.4 55.7 84.3 85.2 82.0 82.0
+LDCRN 67.8 62.2 51.2 69.1 68.3 56.8 56.5 85.3 84.9 83.0 83.2
Table 7
Ablation study of LDCRN on SNLI dataset. ‘‘w/ SUM’’ means that changing CON fusion
strategy to SUM. ‘‘w/o fusion’’ means removing the fusion operation.

Method SNLI test SNLI hard test

Overall E N C Overall E N C

(1) BERT 88.6 91.5 86.3 87.9 79.5 82.8 69.6 85.7

(2) LDCRN (CON) 88.6 82.4 84.0 89.1 81.4 85.8 68.9 89.1
(3) w/ SUM 88.7 91.8 83.9 90.2 80.7 83.9 67.0 90.5
(4) w/o fusion 88.6 91.3 86.9 87.5 80.4 82.7 72.6 85.6

(5) w/o 𝑳 88.4 90.5 86.6 88.0 80.9 81.7 74.3 86.5
(6) w/o 𝐿𝑜𝑠𝑠3 88.7 92.2 84.8 89.0 80.5 84.8 67.7 88.6
(7) w/o 𝐿𝑜𝑠𝑠2 88.8 92.4 86.8 88.6 81.0 85.1 69.9 87.6

large performance decrease on entailment and contradiction relations.
These two components (i.e., 𝑌ℎ,𝑐 , 𝐿) are both necessary for LDCRN. To
conduct a detailed analysis, we conducted a parameter sensitive test
over 𝜆 in the following section.

4.4. Parameter sensitive test

In the previous text, we have demonstrated that the calculation
of 𝑌ℎ,𝑐 has a more significant impact on the debiased learning per-
formance. To further analyze how implementations of different causal
effect calculations affect the model performance, we conduct additional
experiments on hyper-parameters 𝜆 in Eq. (13), whose values are
chosen from {0.1, 0.2, 0.3,… , 0.9} and report the corresponding results
in Fig. 4.

From the results, we can observe that by incorporating 𝑌ℎ,𝑐 and
𝑌𝑝,ℎ,𝑟, LDCRN achieves impressive improvement on SNLI hard test set,
compared with BERT𝑏𝑎𝑠𝑒 baseline. Moreover, with the value increase,
LDCRN becomes unstable. But the overall trend is upward. The best
performance is achieved when 𝜆 = 0.9. This behavior can be attributed
to the role of 𝑌ℎ,𝑐 in controlling the degree of biased learning. While 𝑌ℎ,𝑐
is crucial, excessively large values of 𝑌ℎ,𝑐 are not conducive to effective
biased learning. Therefore, an appropriate value for 𝜆 enables better
learning about bias, ultimately improving the debiasing performance
of LDCRN.

4.5. Case study

To further demonstrate the effectiveness of LDCRN, we conduct
a qualitative analysis of the model results, which are summarized in
Fig. 5. Fig. 5(a)–(c) illustrates some typical language biases. We can
observe that BERT exploits language bias to make a shortcut. Thus,
it is easily misled by the spurious correlations between specific words
and labels, and makes incorrect predictions. For debiased baselines, we
can observe that their performance is not stable enough. For example,
significant word overlap in sentence pairs will mislead them to make in-
correct predictions (Fig. 5(b)). On the contrary, LDCRN can successfully
measure these biases and rectify them during prediction.

Meanwhile, we also report some bad cases for better illustration.
In Fig. 5(d), LDCRN overly weakens the connection between negation
expression and contradiction label, resulting in an incorrect prediction.
This result demonstrates the importance of debiasing intensity in model
learning. We should take care of the trade-off between the original
76
target and debiased target. Moreover, Fig. 5(e)–(f) also provide two bad
cases. After a detailed analysis, we believe that these cases are more
likely to have incorrect ground truth. For example, in Fig. 5(e), the
second half of premise has a similar meaning to hypothesis. Therefore,
the inference relation should be entailment. From this perspective,
LDCRN does achieve the impressive debiased target, and demonstrates
its effectiveness.

5. Conclusion

In this paper, we argued that existing debiased NLU models
achieved debiased learning by directly pre-defining the bias types,
lacking flexibility and persuasiveness. In response, we proposed a
novel LDCRN to achieve better debiased learning and natural language
inference. Specifically, we conducted detailed data analysis to figure
out what spurious correlations were and how they were introduced
into NLI. Based on the results, we built a causal graph to describe
the causal relation and spurious correlations in NLI data. Then, we
designed a novel label-aware biased module to realize the fine-grained
analysis and employed PLMs to calculate the causal effect of different
paths in the causal graph. The debiased learning was achieved by
subtracting causal effect of spurious correlations from total causal
effect. Extensive experiments on two well-known NLI datasets and
multiple challenging hard test sets demonstrated that LDCRN could
realize impressive debiased performance improvement at a minimal
cost in terms of traditional performance reduction. Meanwhile, we
constructed two challenge test sets based on MultiNLI to facilitate the
community. Since our main contribution is to use label information to
guide the fine-grained spurious correlation modeling, in the future, we
plan to extend our work to more text classification tasks (e.g., sentiment
analysis and paraphrase identification). Moreover, we also plan to
leverage the category information of language biases to further enhance
debiased learning.

6. Limitations

Despite the advantages of pinpointed causal relation and spurious
correlation analysis, as well as the designed label-aware biased module,
our proposed LDCRN still has some space for further improvement. First
of all, we leverage Top-K related words to describe biased information,
which might not be the best solution for biased information modeling.
Taking pre-defined bias definitions and descriptions (Naik et al., 2018;
McCoy et al., 2019) might be a better solution. Second, we do not con-
sider the Large Language Model (LLM). How to fully exploit the ability
of LLM for spurious correlation recognition as well as conditional data
syntactic is also a promising direction. Third, we do not apply our
work to different text classification tasks. How to modify our proposed
method to measure spurious correlations among different amounts of
input sentences and the semantic relations is also one of the promising
directions. We will leave these as our future work.
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