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Abstract—Social recommendation has emerged to leverage social connections among users for predicting users’ unknown

preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on

utilizing each user’s first-order social neighbors’ interests for better user modeling, and failed to model the social influence diffusion

process from the global social network structure. Recently, we propose a preliminary work of a neural influence Diffusion Network

(i.e., DiffNet) for social recommendation L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, and M. Wang, “A neural influence diffusion model for

social recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2019, pp. 235–244.. DiffNet models the recursive

social diffusion process for each user, such that the influence diffusion hidden in the higher-order social network is captured in the user

embedding process. Despite the superior performance of DiffNet, we argue that, as users play a central role in both user-user social

network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the latent

collaborative interests of users hidden in the user-item interest network. To this end, in this paper, we propose DiffNet++, an improved

algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social

recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting

both the higher-order user latent interest reflected in the user-item graph and higher-order user influence reflected in the user-user

graph for user embedding learning. This is achieved by iteratively aggregating each user’s embedding from three aspects: the user’s

previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item

neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively

aggregate user embeddings from these three aspects. Finally, extensive experimental results on four real-world datasets clearly show

the effectiveness of our proposed model. We release the source code at https://github.com/PeiJieSun/diffnet.

Index Terms—Recommender systems, graph neural network, social recommendation, influence diffusion, interest diffusion

Ç

1 INTRODUCTION

COLLABORATIVE Filtering (CF) based recommender systems
learn user and item embeddings by utilizing user-item

interest behavior data, and have attracted attention from both
the academia and industry [31], [36]. However, as most users
have limited behavior data, CF suffers from the data sparsity
issue [1]. With the development of social networks, users
build social relationships and share their item preferences on
these platforms. Aswell supported by the social influence the-
ory, users in a social network would influence each other,
leading to similar preferences [2], [12]. Therefore, social

recommendation has emerged, which focuses on exploiting
social relations among users to alleviate data sparsity and
enhancing recommendation performance [13], [18], [19], [42].

In fact, as users play a central role in social platforms
with user-user social behavior and user-item interest behav-
ior, the key to social recommendation relies on learning
user embeddings with these two kinds of behaviors. For a
long time, by treating the user-item interest network as a
user-item matrix, CF based models resort to matrix factori-
zation to project both users and items into a low latent
space [31], [35], [36]. Most social based recommender sys-
tems advance these CF models by leveraging the user-user
matrix to enhance each user’s embedding learning with
social neighbors’ records, or regularizing the user embed-
ding learning process with social neighbors [14], [18], [20],
[29]. For example, SocialMF [18] and SR [29] added social
regularization terms based on social neighbors in the opti-
mization function, and TrustSVD incorporated influences of
social neighbors’ decisions as additional terms for modeling
a user’s embedding [14]. In summary, these models lever-
aged the first-order social neighbors for recommendation,
and partially alleviated the data sparsity issue in CF.

Despite the performance improvement of these social
recommendation models, we argue that the current social
recommendation models are still far from satisfactory. In
fact, as shown in Fig. 1, users play a central role in two kinds
of behavior networks: the user-user social network and the
user-item interest network. On one hand, users naturally
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form a social graph with a global recursive social diffusion
process. Each user is not only influenced by the direct first-
order social neighbors, but also the higher-order ego-centric
social network structure. E.g., though user u1 does not fol-
low u5, u1 may be largely influenced by u5 in the social rec-
ommendation process as there are two second-order paths:
u1 ! u2 ! u5 and u1 ! u4 ! u5. Simply reducing the
social network structure to the first-order social neighbors
would not well capture these higher-order social influence
effect in the recommendation process. On the other hand,
given the user-item bipartite interest graph, CF relies on the
assumption that “similar users show similar item interests”.
Therefore, each user’s latent collaborative interests are not
only reflected by her rated items but also influenced by sim-
ilar users’ interests from items. E.g., though u1 does not
show interests for v3with a direct edge connection, the simi-
lar user u2 (as they have common item interests of v1)
shows item interest for v3 as: u1 $ v1 $ u2 $ v3. There-
fore, v3 is also useful for learning u1’s embedding to ensure
the collaborative signals hidden in the user-item graph are
injected for user embedding learning. To summarize, previ-
ous CF and social recommendation models only considered
the observed first-order structure of the two graphs, leaving
the higher-order structures of users under explored.

To this end, we reformulate users’ two kinds of behaviors
as a heterogeneous network with two graphs, i.e., a user-user
social graph and a user-item interest graph, and propose how
to explore the heterogeneous graph structure for social recom-
mendation. In fact, Graph Convolutional Networks (GCNs)
have shown huge success for learning graph structures with
theoretical elegance, practical flexibility and high perfor-
mance [5], [8], [21]. GCNs perform node feature propagation
in the graph, which recursively propagate node features by
iteratively convolutional aggregations from neighborhood
nodes, such that the up to Kth order graph structure is cap-
turedwithK iterations [46]. By treating user-item interactions
as a bipartite interest graph and user-user social network as a
social graph, some works have applied GCNs separately on
these two kinds of graphs [40], [42], [47], [50]. On one hand,
given the user-item interest graph, NGCF is proposed to

directly encode the collaborative information of users by
exploring the higher-order connectivity patterns with embed-
ding propagation [40]. On the other hand, in our previous
work, we propose a Diffusion neural Network (DiffNet) to
model the recursive social diffusion process in the social net-
work, such that the higher-order social structure is directly
modeled in the recursive user embedding process [42]. These
graph basedmodels showed superior performance compared
to the previous non-graph based recommendation models by
modeling either graph structure. Nevertheless, how to design
a unified model for better user modeling of these two graphs
remains under explored.

In this paper, we propose to advance our preliminary
DiffNet structure, and jointly model the two graph
structure (user-item graph and user-user graph) for social
recommendation. While it seems intuitive to perform mes-
sage passing on both each user’s social network and interest
network, it is not well designed in practice as these two
kinds of graphs serve as different sources to reflect each
user’s latent preferences. Besides, different users may have
different preferences in balancing these two graphs, with
some users are likely to be swayed by social neighbors,
while others prefer to remain their own tastes. To this end,
we propose DiffNet++, an improved algorithm of DiffNet
that models the neural influence diffusion and interest dif-
fusion in a unified framework. Furthermore, we design a
multi-level attention network structure that learns how to
attentively aggregate user embeddings from different nodes
in a graph, and then from different graphs. In summary,
our main contributions are listed as follows:

� Compared to our previous work of DiffNet [42], we
revisit the social recommendation problem as pre-
dicting the missing edges in the user-item interest
graph by taking both user-item interest graph and
user-user social graph as input.

� We propose DiffNet++ that models both the higher-
order social influence diffusion in the social network
and interest diffusion in the interest network in a uni-
fied model. Besides, we carefully design a multi-level

Fig. 1. An overall illustration of social recommendation. The second column shows how traditional models treat this problem with matrix representa-
tions of users’ two kinds of behaviors. In this paper, we try to model both the influence diffusion and interest diffusion with graph representation of
users’ two kinds of behaviors.
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attention network to attentively learn how the users
prefer different graph sources.

� Extensive experimental results on two real-world
datasets clearly show the effectiveness of our pro-
posed DiffNet++ model. Compared to the baseline
with the best performance, DiffNet++ outperforms
it about 14 percent on Yelp , 21 percent on Flickr,
12 percent on Epinions, and 4 percent on Dianping
for top-10 recommendation.

2 PROBLEM DEFINITION AND RELATED WORK

2.1 Problem Definition

In a social recommender system, there are two sets of entities:
a user set U (jU j ¼ M), and an item set V (jV j ¼ N). Users
form two kinds of behaviors in the social platforms: making
social connections with other users and showing item inter-
ests. These two kinds of behaviors could be defined as two
matrices: a user-user social connectionmatrix S 2 RM�M , and
a user-item interaction matrix R 2 RM�N . In the social matrix
S, if user a trusts or follows user b, sba ¼ 1, otherwise it equals
0. We use Sa to represent the user set that user a follows, i.e.,
Sa ¼ ½bjsba ¼ 1�. The user-item matrix R shows users’ rating
preferences and interests to items. As some implicit feedbacks
(e.g., watching movies, purchasing items, listening to songs )
are more common in real-world applications, we also con-
sider the recommendation scenario with implicit feed-
back [36]. Let R denote users’ implicit feedback based rating
matrix, with rai ¼ 1 if user a is interested in item i, otherwise
it equals 0. We use Ra represents the item set that user a has
consumed, i.e., Ra ¼ ½ijrai ¼ 1�, and Ri denotes the user set
which consumed the item i, i.e.,Ri ¼ ½ajria ¼ 1�.

Given the two kinds of users’ behaviors, the user-user
social network is denoted as a user-user directed graph:
GS ¼< U;S > , where U is the nodes of all users in the
social network. If the social network is undirected, then user
a connects to user b denotes a follows b, and b also follows a,
i.e., sab ¼ 1^ sba ¼ 1. The user interest network denotes
users’ interests for items, which could be constructed from
the user-item rating matrix R as an undirected bipartite net-
work:GI ¼< U [ V;R > .

Besides, each user a is associated with real-valued attrib-
utes (e.g., user profile), denoted as xa in the user attribute
matrix X 2 Rd1�M . Also, each item i has an attribute vector
yi (e.g., item text representation, item visual representation)
in item attribute matrix Y 2 Rd2�N . We formulate the graph
based social recommendation problem as:

Definition 1 (Graph Based Social Recommendation).
Given the user social network GS and user interest network
GI , these two networks could be formulated as a heterogeneous
graph that combines GS and GI as: G ¼ GS [GI ¼<
U [ V;X;Y;R;S > . Then, the graph based social recommen-
dation asks that: given graph G in the social network, our goal
is to predict users’ unknown preferences to items, i.e., the miss-
ing links in the graph based social recommendation as : R̂ ¼
fðGÞ ¼ fðU [ V;X;Y;R;SÞ, where R̂ 2 RM�N denotes the
predicted preferences of users to items.

2.2 Preliminaries and Related Work

In this subsection, we summarize the related works for
social recommendation into three categories: classical social

recommendation models, the recent graph based recom-
mendation models, and attention modeling in the recom-
mendation domain.

Classical Social Recommendation Models. By formulating
users’ historical behavior as a user-item interaction matrix
R, most classical CF models embed both users and items in
a low dimension latent space, such that each user’s pre-
dicted preference to an unknown item turns to the inner
product between the corresponding user and item embed-
dings as [31], [35], [36]

r̂ai ¼ vTi ua; (1)

where ua is the embedding of user a, which is the a-th column
of the user embedding matrixU. Similarly, vi represents item
i’s embedding in the ith column of item embeddingmatrixV.

In fact, as various specialized matrix factorization models
have been proposed for specific tasks, factorizationmachines
is proposed as a general approach to mimic most factoriza-
tion models with simple feature engineering [35]. Recently,
some deep learning based models have been proposed to
tackle the CF problem [16], [27]. These approaches advanced
previous works by modeling the non-linear complex interac-
tions between users, or the complex interactions between
sparse feature input.

The social influence and social correlation among users’
interests are the foundation for building social recommender
systems [23], [24], [28], [37]. Therefore, the social network
among users could be leveraged to alleviate the sparsity in
CF and enhance recommendation performance [14], [29],
[37]. Due to the superiority of embedding based models for
recommendation, most social recommendation models are
also built on these embedding models. These social embed-
ding models could be summarized into the following two
categories: the social regularization based approaches [18],
[20], [25], [29], [43] and the user behavior enhancement based
approaches [13], [14]. Specifically, the social regularization
based approaches assumed that connected users would
show similar embeddings under the social influence diffu-
sion. As such, besides the classical CF pair-wised loss func-
tion in BPR [36], an additional social regularization term is
incorporated in the overall optimization function as

XM
i¼1

XM
j¼1

sijjjui � ujjj2F ¼ UðD� SÞUT ; (2)

whereD is a diagonal matrix with daa ¼
PM

b¼1 sab.
Instead of the social regularization term, some research-

ers argued that the social network provides valuable infor-
mation to enhance each user’s behavior [14], [49]. TrustSVD
is such a representative model that shows state-of-the-art
performance [13], [14]. By assuming the implicit feedbacks
of a user’s social neighbors’ on items could be regarded as
the auxiliary feedback of this user, TrustSVD modeled the
predicted preference as

r̂ai ¼ vTi ua þ jRaj
�1
2

X
i2Ra

yi þ jSaj�
1
2

X
b2Sa

ub

 !
; (3)

where Ra ¼ ½ijrai ¼ 1� is the itemset that a shows implicit
feedback, and yi is an implicit factor vector. Therefore, these
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first two terms compose SVD++ model that explicitly builds
each user’s liked items in the user embedding learning pro-
cess [22]. In the third term, ub denotes the latent embedding
of user b, who is trusted by a. As such, a’s latent embedding
is enhanced by considering the influence of her trusted
users’ latent embeddings in the social network.

As items are associated with attribute information (e.g.,
item description, item visual information), ContextMF is
proposed to combine social context and social network
under a collective matrix factorization framework with care-
fully designed regularization terms [20]. Social recommen-
dation has also been extended with social circles [34],
temporal context [37], rich contextual information [41], user
role in the social network [38], and efficient training models
without negative sampling [6]. All these previous works
focused on how to explore the social neighbors, i.e., the
observed links in the social network. Recently, CNSR is pro-
posed to leverage the global social network in the recommen-
dation process [43]. In CNSR, each user’s latent embedding is
composed of two parts: a free latent embedding (classical CF
models), and a social network embedding that captures the
global social network structure. Despite the relative
improvement of CNSR, we argue that CNSR is still subopti-
mal as the global social network embedding process is mod-
eled for the network based optimization tasks instead of user
preference learning. In contrast to CNSR, our work explicitly
models the recursive social diffusion process in the global
social network for optimizing the recommendation task.
Researchers proposed to generate social sequences based on
randomwalks on user-user and user-item graph, and further
leveraged the sequence embedding techniques for social rec-
ommendation [11]. This model could better capture the
higher-order social network structure. However, the perfor-
mance heavily relies on the choice of random walk strategy,
including switching between user-item graph and user-user
graph, and the length of random walk, which is both time-
consuming and labor-consuming.

Graph Convolutional Networks and Applications in Recom-
mendation. GCNs generalize the convolutional operations
from the regular euclidean domains to non-euclidean graph
and have empirically shown great success in graph represen-
tation learning [5], [8], [21]. Specifically, GCNs recursively
perform message passing by applying convolutional opera-
tions to aggregate the neighborhood information, such that
the Kth order graph structure is captured with K itera-
tions [21]. By treating the user-item interaction as a graph
structure, GCNs have been applied for recommendation [47],
[50]. Earlier works relied on spectral GCNs, and suffered
from huge time complexity [32], [50]. Therefore, many recent
works focus on the spatial based GCNs for recommenda-
tion [4], [40], [47], [48]. PinSage is a GCN based content rec-
ommendation model by propagating item features in the
item-item correlation graph [47]. GC-MC applied graph neu-
ral network for CF, with the first order neighborhood is
directly modeled in the process [4]. NGCF extended GC-MC
withmultiple layers, such that the higher-order collaborative
signals between users and items can be modeled in the user
and item embedding learning process [40].

As the social structure among users could be naturally for-
mulated as a user-user graph, recently we propose a prelimi-
nary graph based social recommendation model, DiffNet, for

modeling the social diffusion process in recommenda-
tion [42]. DiffNet advances classical embedding based mod-
els with carefully designed influence diffusion layers, such
that how users are influenced by the recursive influence dif-
fusion process in the social network could be well modeled.
Given each user a, the user embedding ua is sent to the influ-
ence diffusion layers. Specifically, let K denote the depth of
the influence diffusion layers and hk

a is the user representa-
tion at the kth layer of the influence diffusion part. For each
user a, her updated embedding hkþ1

a is performed by social
diffusion of the embeddings at the kth layer with two steps:
aggregation from her social neighbors at the kth
layer (Eq. (4)), and combination of her own latent embedding
hk
a at kth layer and neighbors

hkþ1
Sa ¼ Poolðhk

b jb 2 SaÞ; (4)

hkþ1
a ¼ sðkþ1ÞðWk � ½hkþ1

Sa
;hk

a�Þ; (5)

where the first equation is a pooling operation that trans-
forms all the social trusted users’ influences into a fixed
length vector hkþ1

Sa , sðxÞ is a transformation function and we
use sðkþ1Þ to denote the transformation function for ðkþ 1Þth
layer. As such, with a diffusion depth K, DiffNet could
automatically models how users are influenced by the K-th
order social neighbors in a social network for social recom-
mendation. When K ¼ 0, the social diffusion layers disap-
pear and DiffNet degenerates to classical CF models.

In summary, all these previous GCN based models either
considered the higher-order social network or the higher-
order user interest network for recommendation. There are
some recently works that also leverage the graph neural net-
works for social recommendation [10], [44]. Specifically,
GraphRec is designed to learn user representations by fusing
first order social and first-order item neighbors with non-lin-
ear neural networks [10]. Researchers also proposed deep
learning techniques to model the complex interaction of
dynamic and static patterns reflected from users’ social
behavior and item preferences [44]. Although these works
relied on deep learning based models with users’ two kinds
of behaviors, they only modeled the first order structure of
the social graph and interest graph. We differ from these
works as we simultaneously fuse the higher-order social and
interest network structure for better social recommendation.

Attention Models and Applications.As a powerful and com-
mon technique, attention mechanism is often adopted when
multiple elements in a sequence or set would have an
impact of the following output, such that attentive weights
are learned with deep neural networks to distinguish
important elements [3], [17], [45]. Given a user’s rated item
history, NAIS is proposed to learn the neural attentive
weights for item similarity in item based collaborative filter-
ing [15]. For graph structure data, researchers proposed
graph attention networks to attentively learn weights of
each neighbor node in the graph convolutional process [39].
In social recommendation, many attention models have
been proposed to learn the social influence strength [10],
[34], [37]. E.g., with each user’s direct item neighbors and
social neighbors, GraphRec leverages attention modeling to
learn the attentive weights for each social neighbor and
each rated item for user modeling [10]. In social contextual
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recommender systems, users’ preferences are influenced by
various social contextual aspect, and an attention network
was proposed to learn the attention weight of each social
contextual aspect in the user decision process. Our work is
also inspired by the applications of attention modeling, and
apply it to fuse the social network and interest network for
social recommendation.

3 THE PROPOSED MODEL

In this section, we first show the overall architecture of our
proposed model DiffNet++, followed by each component.
After that, we will introduce the learning process of DiffNet
++. Finally, we give a detailed discussion of the proposed
model.

3.1 Model Architecture

As shown in the related work part, our preliminary work of
DiffNet adopts the recursive influence diffusion process for
iterative user embedding learning, such that the up to Kth
order social network structure is injected into the social recom-
mendation process [43]. In this part,we proposeDiffNet++, an
enhancedmodel of DiffNet that fuses both influence diffusion
in the social network GS and interest diffusion in the interest
network GI for social recommendation. We show the overall
neural architecture of DiffNet++ in Fig. 2. The architecture
of DiffNet++ contains four main parts: an embedding layer,
a fusion layer, the influence and interest diffusion layers, and
a rating prediction layer. Specifically, by taking related inputs,
the embedding layer outputs free embeddings of users and
items, and the fusion layer fuses both the content features
and free embeddings. In the influence and interest diffusion
layers, we carefully design a multi-level attention structure
that could effectively diffuse higher-order social and interest
networks. After the diffusion process reaches stable, the out-
put layer predicts the preference score of each unobserved
user-itempair.

Embedding Layer. It encodes users and items with corre-
sponding free vector representations. Let P 2 RM�D and
Q 2 RN�D represent the free latent embedding matrices of
users and items with D dimensions. Given the one hot rep-
resentations of user a, the embedding layer performs an
index selection and outputs the free user latent embedding
pa, i.e., the transpose of ath row from user free embedding
matrix P. Similarly, item i’s embedding qi is the transpose
of ith row of item free embedding matrixQ.

Fusion Layer. For each user a, the fusion layer takes pa

and her associated feature vector xa as input, and outputs a
user fusion embedding u0

a that captures the user’s initial
interests from different kinds of input data. We model the
fusion layer as

u0
a ¼ gðW1 � ½pa; xa; �Þ; (6)

where W1 is a transformation matrix, and gðxÞ is a transfor-
mation function. Without confusion, we omit the bias term.
This fusion layer could generalize many typical fusion opera-
tions, such as the concatenation operation u0

a ¼ ½pa; xa� by set-
tingW1 as an identitymatrix and gðxÞ an identity function.

Similarly, for each item i, the fusion layer models the
item embedding v0i as a function between its free latent vec-
tor qi and its feature vector yi as

v0i ¼ gðW2 � ½qi; yi�Þ: (7)

Influence and Interest Diffusion Layers. By feeding the out-
put of each user a’s fused embedding u0

a and each item i’s
fused embedding v0i into the influence and interest diffusion
layers, these layers recursively model the dynamics of this
user’s latent preference and the item’s latent preference
propagation in the graph G with layer-wise convolutions. In
detail, at each layer kþ 1, by taking user a’s embedding uk

a

and item i’s embedding vki from previous layer k as input,
these layers recursively output the updated embeddings of

Fig. 2. The overall structure of the DiffNet++ model. As shown in the graph, we use Node ATT to denote the node level attention layer in each graph,
and Graph ATT to denote the graph attention layer when fusing the interest graph representation and social graph representation.
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vkþ1
i and ukþ1

a with diffusion operations. This iteration step
starts at k ¼ 0 and stops when the recursive process reaches
a pre-defined depth K. As each item only appears in the
user-item interest graph GI , in the following, we would first
introduce how to update item embeddings, followed by the
user embedding with influence and interest diffusions.

For each item i, given its kth layer embedding vki , we
model the updated item embedding vkþ1

i at the ðkþ 1Þth
layer from GI as

~vkþ1
i ¼ AGGuðuk

a; 8a 2 RiÞ ¼
X
a2Ri

hkþ1
ia uk

a; (8)

vkþ1
i ¼ ~vkþ1

i þ vki ; (9)

whereRi ¼ ½ajria ¼ 1� is the userset that rates item i. uk
a is the

kth layer embedding of user a. ~vkþ1
i is the item i’s aggregated

embedding from its neighbor users in the user-item interest
graph GI , with hkþ1

ia denotes the aggregation weight. After
obtaining the aggregated embedding ~vkþ1

i from the kth layer,
each item’s updated embedding vkþ1

i is a fusion of the aggre-
gated neighbors’ embeddings and the item’s emebedding at
previous layer k. In fact, we try different kinds of fusion func-
tions, including the concatenation and the addition, and find
the addition always shows the best performance. Therefore,
we use the addition as the fusion function in Eq. (9).

In the item neighbor aggregation function, Eq. (8) shows
the weight of user a to item i. A naive idea is to aggregate
the embeddings from i’s neighbor users with mean pooling
operation, i.e., ~vkþ1

i =
P

a2Ri

1
jRiju

k
a. However, it neglects the

different interest weights from users, as the importance val-
ues of different users vary in item representation. Therefore,
we use an attention network to learn the attentive weight
hkþ1
ia in Eq. (8) as

hkþ1
ia ¼ MLP1ð½vki ;uk

a�Þ; (10)

where a MultiLayer Perceptrion (MLP) is used to learn the
node attention weights with the related user and item
embeddings at the kth layer. After that, we normalize the
attention weights with

hkþ1
ia ¼ expðhkþ1

ia ÞP
b2Ri

expðhkþ1
ib Þ : (11)

Specifically, the exponential function is used to ensure each
attention weight is larger than 0.

For each user a, let uk
a denote her latent embedding at the

kth layer. As users play a central role in both the social net-
workGS and the interest networkGI , besides her own latent
embedding uk

a, her updated embedding uðkþ1Þ
a at ðkþ 1Þth

layer is influenced by two graphs: the influence diffusion in
GS and the interest diffusion inGI . Let ~p

kþ1
a denote the aggre-

gated embedding of influence diffusion from the social
neighbors and ~qkþ1

a represents the embedding of aggregated
interest diffusion from the interested item neighbors at the
ðkþ 1Þth layer. Then, each user’s updated embedding ukþ1

a is
modeled as

ukþ1
a ¼ uk

a þ ðgkþ1
a1 ~pkþ1

a þ gkþ1
a2 ~qkþ1

a Þ; (12)

~pkþ1
a ¼

X
b2Sa

akþ1
ab uk

b ; (13)

~qkþ1
a ¼

X
i2Ra

bkþ1
ai vki ; (14)

where Eq. (12) shows how each user updates her latent
embedding by fusing the influence diffusion aggregation
~pkþ1
a and interest diffusion aggregation ~qkþ1

a , as well as her
own embedding uk

a at previous layer. Since each user
appears in both the social graph and interest graph,
Eqs. (13) and (14) model the influence diffusion aggregation
and interest diffusion aggregation from the two graphs
respectively. Specifically, akþ1

ab denotes the social influence
of user b to a at the ðkþ 1Þth layer in the social network, and
bkþ1
ai denotes the attraction of item i to user a at the ðkþ 1Þth

layer in the interest network.
In addition to the user and item embeddings, there are

three groups ofweights in the above three equations. A naive
idea is to directly set equal values of each kind of weights,

i.e., g
ðkþ1Þ
a1 =g

ðkþ1Þ
a2 =1

2 , a
ðkþ1Þ
ab = 1

jSaj , and b
ðkþ1Þ
ai = 1

jRaj . However, this

simple idea could not well model the different kinds of
weights in the user decision process. In fact, these three
groups of weights naturally present a two-layer multi-level
structure. Specifically, the social influence strengths and the
interest strengths could be seen as node-level weights, which
model how each user balances different neighboring nodes
in each graph. By sending the aggregations of node level
attention into Eq. (12), gkþ1

al is the graph level weight that
learns to fuse and aggregate information from different
graphs. Specifically, the graph layer weights are important
as they model how each user balances the social influences
and her historical records for user embedding. Different
users vary, with some users are more likely to be swayed by
the social network while the interests of others are quite sta-
ble. Therefore, the weights in the graph attention layer for
eah user also need to be personally adapted.

As the three groups of weights represent a multi-level
structure, we therefore use a multi-level attention network
to model the attentive weights. Specifically, the graph atten-
tion network is designed to learn the contribution weight of
each aspect when updating a’s embedding with different
graphs, i.e., ~pkþ1

a and ~qkþ1
a in Eq. (12), and the node attention

networks are designed to learn the attentive weights in each
social graph and each interest graph respectively. Specifi-
cally, the social influence score akþ1

ab is calculated as follows:

akþ1
ab ¼ MLP2ð½uk

a;u
k
b �Þ: (15)

In the above equation, the social influence strength akþ1
ab

takes the related two users’ embeddings at the kth layer as
input, and sending these features into a MLP to learn the
complex relationship between features for social influence
strength learning. Without confusion, we omit the normali-
zation step of all attention modeling in the following, as all
of them share the similar form as shown in Eq. (11).

Similarly, we calculate the interest influence score bkþ1
ai by

taking related user embedding and item embedding as input

bkþ1
ai ¼ MLP3ð½uk

a; v
k
i �Þ: (16)
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After obtaining the two groups of the node attentive
weights, the output of the node attention weights are sent to
the graph attention network, and we could model the graph
attention weights of gkþ1

al ðl ¼ 1; 2Þ as

gkþ1
a1 ¼ MLP4ð½uk

a; ~p
k
a�Þ (17)

gkþ1
a2 ¼ MLP4ð½uk

a; ~q
k
a�Þ: (18)

In the above equation, for each user a, the graph attention
layer scores not only rely on the user’s embedding (uk

a), but
also the weighted representations that are learnt from the
node attention network. For example, as shown in Eq. (12),
g
ðkþ1Þ
a1 denotes the influence diffusionweight for contributing

to users’ depth ðkþ 1Þ embedding , with additional input of
the learned attentive combination of the influence diffusion
aggregation in Eq. (13). Similarly, g

ðkþ1Þ
a2 denotes the interest

diffusion weight for contributing to users’ depth ðkþ 1Þ
embedding , with additional input of the learned attentive
combination of the interest diffusion aggregation in Eq. (14).
As gkþ1

a1 þ gkþ1
a2 ¼ 1, larger gkþ1

a1 denotes higher influence dif-
fusion effect with less interest diffusion effect. Therefore, the
learned aspect importance scores are tailored to each user,
which distinguish the importance of the influence diffusion
effect and interest diffusion effect during the user’s embed-
ding updating process.

Prediction Layer. After the iterative K-layer diffusion pro-
cess, we obtain the embedding set of u and i with uk

a and vki
for k ¼ ½0; 1; 2; . . . ; K�. Then, for each user a, her final
embedding is denoted as: u�

a ¼ ½u0
ajju1

ajj � � � jjuK
a � that concat-

enates her embedding at each layer. Similarly, each item i’s
final embedding is : v�i ¼ ½v0i jjv1i jj � � � jjvKi �. After that, the
predicted rating is modeled as the inner product between
the final user and item embeddings [7]

r̂ai ¼ ½u0
ajju1

ajj � � � jjuK
a �T ½v0i jjv1i jj � � � jjvKi �: (19)

Please note that, some previous works directly use the
Kth layer embedding for prediction layer as r̂ai ¼ ½uK

a �TVK
i .

Recently, researchers found that if we use the Kth layer
embedding, GCN based approaches are proven to over-
smoothing issue as K increases [26], [51]. In this paper, to
tackle the over-smoothing problem, we adopt the prediction
layer as the LR-GCCF model, which receives state-of-the-art
performance with user-item bipartite graph structure [7]. In
LR-GCCF, Chen et al. carefully analyzed the simple concate-
nation of entity embedding at each layer is equivalent to
residual preference learning, and why this simple operation
could alleviate the over-smoothing issue [7].

3.2 Model Training

We use a pair-wise ranking based loss function for optimi-
zation, which is widely used for implicit feedback [36]

L ¼ min
Q

X
ða;iÞ2Rþ[ða;jÞ2R�

�lnsðr̂ai � r̂ajÞ þ �jjQjj2 ; (20)

where Rþ denotes the set of positive samples (observed user-
itempairs), andR� denotes the set of negative samples (unob-
served user-item pairs that randomly sampled from R). sðxÞ
is sigmoid function. Q ¼ ½Q1;Q2� is the regularization

parameters in ourmodel, withQ1 ¼ ½P;Q�, and the parameter
set in the fusion layer and the multi-level attention modeling,
i.e., Q2 ¼ ½W1;W2; ½MLPi�i¼1;2;3;4�. All the parameters in the
above loss function are differentiable.

For all the trainable parameters, we initialize them with
the Gaussian distribution with a mean value of 0 and a stan-
dard deviation of 0.01. Besides, we do not deliberately
adjust the dimensions of each embedding size in the convo-
lutional layer, all of them keep the same size. As for the sev-
eral MLPs in the multi-level attention network, we use two-
layer structure. In the experiment part, we will give more
detail descriptions about the parameter setting.

3.3 Matrix Formulation of DiffNet++

The key idea of our proposed DiffNet++ model is the well
designed interest and influence diffusion layers. In fact, this
part could be calculated in matrix forms. In the following, we
would like to show how to update user and item embedding
from the kth layer to the ðkþ 1Þth layer with matrix opera-
tions. LetHðkþ1Þ ¼ ½hkþ1

ia � 2 RN�M denote thematrix represen-
tation of attentive item aggregation weigth in Eq. (10), we
have

H ¼ MLP1ðUk;VkÞ: (21)

At the user side, given Eq. (12) ,let Aðkþ1Þ ¼ ½akþ1
ab � 2

RM�M , Bðkþ1Þ ¼ ½bkþ1
ia � 2 RM�N denote the attentive weight

matrices of social network (Eq. (13)) and interest network
(Eq. (14)), i.e., the outputs of the node attention layer. We
use Gðkþ1Þ ¼ ½gkþ1

al � 2 RM�2 to denote the attentive weight
matrix of the multi-level networks in Eqs. (17) and (18). All
these three attention matrices can be calculated similarly as
shown above.

After learning the attention matrices, we could update
user and item embeddings at the ðkþ 1Þth layer as

Uðkþ1Þ

Vðkþ1Þ

" #
¼ I1 R: � B: � rmðGð:; 2Þ; NÞ

RT : �H I2

� �
UðkÞ

VðkÞ

" #

(22)

þ S: �A: � rmðGð:; 1Þ;MÞ 0
0 0

� �
UðkÞ

VðkÞ

� �
(23)

¼ I1 þ S: �A: � rmðGð:; 1Þ;MÞ R: � B: � rmðGð:; 2Þ; NÞ
RT : �H I2

� �
UðkÞ

VðkÞ

" #
;

(24)

where I1 is an identity matrix with M rows, and I2 is an
identity matrix with N rows. Moreover, Gð:; 1Þ and Gð:; 2Þ
represent the first column and second column of matrix G,
:� denotes the dot product and rmðA; r1Þ denotes an array
that containing r1 copies of A in the column dimensions.

Based on the above matrix operations of the social and
influence diffusion layers, DiffNet++ is easily implemented
by current deep learning frameworks.

3.4 Discussion

Space Complexity.As shown in Eq. (20), themodel parameters
are composed of two parts: the user and item free embed-
dings Q1=½P;Q�, and the parameter set in the fusion layer
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and the attention modeling, i.e., Q2=½W1;W2; ½MLPi�i¼1;2;3;4�.
Sincemost embedding basedmodels (e.g., BPR [36], FM [35])
need to store the embeddings of each user and each item, the
space complexity of Q1 is the same as classical embedding
based models and grows linearly with users and items. For
parameters inQ2, they are shared among all users and items,
with the dimension of each parameter is far less than the
number of users and items. In practice, we empirically find
the two-layer MLP achieve the best performance. As such,
this additional storage cost is a small constant that could be
neglected. Therefore, the space complexity of DiffNet++ is
the same as classical embeddingmodels.

Time Complexity. Compared to the classical matrix factori-
zation based models, the additional time cost lies in the
influence and interest diffusion layers. Given M users, N
items and diffusion depth K, suppose each user directly
connects to Ls users and Li items on average, and each item
directly connects to Lu users. At each influence and interest
diffusion layer, we need to first calculate the two-level
attention weight matrices as shown in Eq. (21), and then
update user and item embeddings. Since in practice, MLP
layers are very small (e.g., two layers), the time cost for
attention modeling is about OðMðLs þ LiÞDþNLuDÞ. After
that, as shown in Eq. (24), the user and item update step also
costs OðMðLs þ LiÞDþNLuDÞ. Since there are K diffusion
layers, the total additional time complexity for influence
and interest diffusion layers are OðKðMðLs þ LiÞ þ
NLuÞDÞ. In practice, as Ls; Li; Lu � minfM;Ng, the addi-
tional time is linear with users and items, and grows line-
arly with diffusion depth K. Therefore, the total time
complexity is acceptable in practice.

Model Generalization. The proposed DiffNet++ model is
designed under the problem setting with the input of user
feature matrix X, item feature matrix Y, and the social net-
work S. Specifically, the fusion layer takes users’ (items’)
feature matrix for user (item) representation learning. The
layer-wise diffusion layer utilizes the social network struc-
ture S and the interest network structure R to model how
users’ latent preferences are dynamically influenced from
the recursive influence and interest diffusion process. Next,
we would show that our proposed model is generally appli-
cable when different kinds of data input are not available.

When the user (item) features are not available, the
fusion layer disappears. In other words, as shown in Eq. (7),
each item’s latent embedding v0i degenerates to qi. Simi-
larly, each user’s initial layer-0 latent embedding u0 ¼ pa

(Eq. (6)). Similarly, when either the user attributes or the
item attributes do not exist, the corresponding fusion layer
of user or item degenerates.

4 EXPERIMENTS

Datasets. We conduct experiments on four real-world data-
sets: Yelp, Flickr, Epinions and Dianping.

Yelp is a well-known online location based social net-
work, where users could make friends with others and
review restaurants. We use the Yelp dataset that is publicly
available.1 Flickr2 is an online image based social sharing

platform for users to follow others and share image preferen-
ces. In this paper, we use the social image recommendation
dataset that is crawled and published by authors in [41],
with both the social network structure and users’ rating
records of images. Epinions is a social based product review
platform and the dataset is introduced in [30] and is publicly
available.3 Dianping is the largest Chinese location based
social network, and we use this dataset that is crawled by
authors in [25]. This dataset is also publicly available.4

Among the four datasets, Yelp and Flickr are two data-
sets with user and item attributes, and are adopted as data-
sets of our previously proposed DiffNet model [42]. The
remaining two datasets of Epinions and Dianping do not
contain user and item attributes. We use the same prepro-
cessing steps of the four datasets. Specifically, as the original
ratings are presented with detailed values, we transform the
original scores to binary values. If the rating value is larger
than 3, we transform it into 1, otherwise it equals 0. For both
datasets, we filter out users that have less than 2 rating
records and 2 social links and remove items which have
been rated less than 2 times. We randomly select 10 percent
of the data for the test. In the remaining 90 percent data, to
tune the parameters, we select 10 percent from the training
data as the validation set. We show an overview of the char-
acteristics of the four datasets in Table 1. In this table, the
last line shows whether the additional user and item attrib-
utes are available on this dataset.

Baselines and Evaluation Metrics. To illustrate the effective-
ness of our method, we compare DiffNet++ with competitive
baselines, including classical CF models (BPR [36], FM [35]),
social based recommendationmodel (SocialMF [18], TrustSVD
[13], ContextMF [20], CNSR [43]), as well as the graph based
recommendation models of GraphRec [10], PinSage [47],
NGCF [40]. Please note that, in PinSage, we take the user-item
graph with both user and item features as input, in order to
transform this model for the recommendation task. For our
proposed models of DiffNet [42] and DiffNet++, since both
models are flexible and could be reduced to simpler versions
without user and item features, we use DiffNet-nf and DiffNet
++-nf to represent reduced versions of DiffNet and DiffNet++
when removing user and item features. For better illustration,
we list the main characteristics of all these models in Table 2,
with our proposed models are listed with italic letters. Please
note that, as BPR learns free user and item embeddings with
the observed user-item ratings. Therefore, the first-order

TABLE 1
The Statistics of the Four Datasets After Preprocessing

Dataset Yelp Flickr Epinions Dianping

Users 17,237 8,358 18,202 59,426
Items 38,342 82,120 47,449 10,224

Ratings 204,448 327,815 298,173 934,334
Links 143,765 187,273 381,559 813,331

Rating Density 0.03% 0.05% 0.03% 0.12%
Link Density 0.05% 0.27% 0.15% 0.02%

Attributes @ @ � �

1. https://www.yelp.com/dataset
2. http://flickr.com/

3. http://www.trustlet.org/downloaded_epinions.html
4. https://lihui.info/data/
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interest network is not learned in the emebedding modeling
process. As can be seen from this paper, our proposed DiffNet
++-nf and DiffNet++ are the only two models that consider
both the higher-order social influence and higher-order inter-
est network for social recommendation.

For the top-N ranking evaluation, we use twowidely used
metrics, Hit Ratio (HR) [9] and Normalized Discounted
Cummulative Gain (NDCG) [9], [42]. Specifically, HR meas-
ures the percentage of hit items in the top-N list, and NDCG
puts more emphasis on the top ranked items. As we focus on
the top-N ranking performance with large itemset, similar as
many other works [16], [42], to evaluate the performance, for
each user, we randomly select 1,000 unrated items that a user
has not interacted with as negative samples. Then, we mix
these pseudo negative samples and corresponding positive
samples (in the test set) to select top-N potential candidates.
To reduce the uncertainty in this process, we repeat this pro-
cedure 5 times and report the average results.

Parameter Setting. For the regularization parameter � in
Eq. (20), we empirically try it in the range of [0.0001, 0.001,

0.01, 0.1] and finally set � ¼ 0:01 to get the best performance.
For the fusion layer in Eqs. (6) and (7), we first transform the
each user (item) feature vector to the same free embedding
space, and calculate as: u0

a ¼ W1 � xa þ pa, and v0a ¼
W2 � yi þ qa. For attention modeling, we resort to MLP
with two layers. For our proposed model, we initialize all of
them with a Gaussian distribution with a mean value of 0
and the standard deviation of 0.01. We use the Adam opti-
mizer for with an initial learning rate of 0.001, and the train-
ing batch size is 512. In the training process, as there are
much more unobserved items for each user, we randomly
select 8 times pseudo negative samples for each user at each
iteration. Since each iteration we change the pseudo nega-
tive samples, each unobserved item gives very weak signal.
For all the baselines, we carefully tune the parameters to
ensure the best performance.

4.1 Overall Performance Comparison

We show the overall performance of all models for top-10
recommendation with different embedding size D from
Tables 3, 4, 5, and 6. In Table 3, we show the comparisons
on Yelp and Flickr, with the node attribute values are avail-
able. In Table 4, we depict the results on Epinions and Dia-
nping without attribute values. On Epinions and Dianping,
we do not report models that need to take attribute data as
input. We notice that besides BPR, nearly all models show
better performance with the increase of dimension D. All
models improve over BPR, which only leverages the
observed user-item rating matrix for recommendation, and
suffer the data sparsity issue in practice. TrustSVD and
SocialMF utilize social neighbors of each user as auxiliary
information to alleviate this problem. GraphRec further
improves over these traditional social recommendation
models by jointly considering the first-order social neigh-
bors and interest neighbors in the user embedding process.
However, GraphRec only models the first-order relation-
ships of two graphs for user embedding learning, with the
higher-order graph structures are neglected. For GCN based
models, PinSage and NGCF model the higher-order user-
item graph structure, and DiffNet models the higher-order
social structure. These graph neural models beat matrix

TABLE 2
Comparison of the Baselines, With “F” Represents Feature Input

and “S” Denotes the Social Network Input

For the modeling process, we use OI and OS to denote the observed first-order
interest network and social network for user embedding learning. We use
“HS” to denote the higher-order social information for embedding learning,
and “HI” to denote higher-order interest information for embedding learning.

TABLE 3
Overall Comparison With Different Dimension Size D on Yelp and Flickr (Attributes are Available)

Model Yelp Flickr

HR NDCG HR NDCG

D=16 D=32 D=64 D=16 D=32 D=64 D=16 D=32 D=64 D=16 D=32 D=64

BPR 0.2435 0.2616 0.2632 0.1468 0.1573 0.1554 0.0773 0.0812 0.0795 0.0611 0.0652 0.0628
FM 0.2768 0.2835 0.2825 0.1698 0.1720 0.1717 0.1115 0.1212 0.1233 0.0872 0.0968 0.0954
SocialMF 0.2571 0.2709 0.2785 0.1655 0.1695 0.1677 0.1001 0.1056 0.1174 0.0862 0.0910 0.0964
TrustSVD 0.2826 0.2854 0.2939 0.1683 0.1710 0.1749 0.1352 0.1341 0.1404 0.1056 0.1039 0.1083
ContextMF 0.2985 0.3011 0.3043 0.1758 0.1808 0.1818 0.1405 0.1382 0.1433 0.1085 0.1079 0.1102
CNSR 0.2702 0.2817 0.2904 0.1723 0.1745 0.1746 0.1146 0.1198 0.1229 0.0913 0.0942 0.0978
GraphRec 0.2873 0.2910 0.2912 0.1663 0.1677 0.1812 0.1195 0.1211 0.1231 0.0910 0.0924 0.0930
PinSage 0.2944 0.2966 0.3049 0.1753 0.1786 0.1855 0.1192 0.1234 0.1257 0.0937 0.0986 0.0998
NGCF 0.3050 0.3068 0.3042 0.1826 0.1844 0.1828 0.1110 0.1150 0.1189 0.0880 0.0895 0.0945
DiffNet-nf 0.3126 0.3156 0.3195 0.1854 0.1882 0.1928 0.1342 0.1317 0.1408 0.1040 0.1034 0.1089
DiffNet 0.3293 0.3437 0.3461 0.1982 0.2095 0.2118 0.1476 0.1588 0.1657 0.1121 0.1242 0.1271
DiffNet++-nf 0.3194 0.3199 0.3230 0.1914 0.1944 0.1942 0.1410 0.1480 0.1503 0.1100 0.1132 0.1169
DiffNet++ 0.3406 0.3552 0.3694 0.2070 0.2158 0.2263 0.1562 0.1678 0.1832 0.1213 0.1286 0.1420
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based baselines by a large margin, showing the effectiveness
in leveraging higher-order graph structure for recommenda-
tion. Our proposed DiffNet++ model always performs the
best under any dimension D, indicating the effectiveness of
modeling the recursive diffusion process in the social interest
network. Besides, we observe DiffNet++ and DiffNet always
show better performance compared to their counterparts
that do not model the user and item features, showing the

effectiveness of injecting both feature and latent embeddings
in the fusion layer. We further compare the performance of
different models with different top-N values in Tables 5 and
6, and the overall trend is the same as analyzed before. There-
fore, we could empirically conclude the superiority of our
proposed models. As nearly all models showed better per-
formance at D ¼ 64, we would use this setting to show the
comparison of different models in the following analysis.

TABLE 4
Overall Comparison With Different Dimension Size D on Epinions and Dianping (Attributes are not Available)

Model Epinions Dianping

HR NDCG HR NDCG

D=16 D=32 D=64 D=16 D=32 D=64 D=16 D=32 D=64 D=16 D=32 D=64

BPR 0.2620 0.2732 0.2822 0.1702 0.1788 0.1812 0.2160 0.2302 0.2299 0.1286 0.1326 0.1319
SocialMF 0.2720 0.2842 0.2893 0.1732 0.1824 0.1857 0.2325 0.2345 0.2410 0.1360 0.1377 0.1416
TrustSVD 0.2726 0.2854 0.2884 0.1773 0.1839 0.1848 0.2364 0.2371 0.2341 0.1381 0.1401 0.1390
CNSR 0.2757 0.2874 0.2898 0.1748 0.1856 0.1876 0.2356 0.2377 0.2418 0.1394 0.1413 0.1435
GraphRec 0.3093 0.3117 0.3156 0.1994 0.2016 0.2051 0.2408 0.2541 0.2622 0.1412 0.1503 0.1556
PinSage 0.2980 0.3003 0.3073 0.1911 0.1933 0.1928 0.2353 0.2452 0.2552 0.1390 0.1434 0.1489
NGCF 0.3029 0.3065 0.3192 0.1977 0.2008 0.1958 0.2489 0.2586 0.2584 0.1470 0.1503 0.1534
DiffNet 0.3242 0.3281 0.3407 0.2007 0.2054 0.2191 0.2522 0.2600 0.2645 0.1483 0.1521 0.1555
DiffNet++ 0.3367 0.3434 0.3503 0.2158 0.2217 0.2288 0.2676 0.2682 0.2713 0.1593 0.1589 0.1605

TABLE 5
Overall Comparison With Different Top-N Values (D=64) on Yelp and Flickr (Attributes are Available)

Model Yelp Flickr

HR NDCG HR NDCG

N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15

BPR 0.1695 0.2632 0.3252 0.1231 0.1554 0.1758 0.0651 0.0795 0.1037 0.0603 0.0628 0.0732
FM 0.1855 0.2825 0.3440 0.1341 0.1717 0.1876 0.0989 0.1233 0.1473 0.0866 0.0954 0.1062
SocialMF 0.1739 0.2785 0.3365 0.1324 0.1677 0.1841 0.0813 0.1174 0.1300 0.0723 0.0964 0.1061
TrustSVD 0.1882 0.2939 0.3688 0.1368 0.1749 0.1981 0.1089 0.1404 0.1738 0.0978 0.1083 0.1203
ContextMF 0.2045 0.3043 0.3832 0.1484 0.1818 0.2081 0.1095 0.1433 0.1768 0.0920 0.1102 0.1131
CNSR 0.1877 0.2904 0.3458 0.1389 0.1746 0.1912 0.0920 0.1229 0.1445 0.0791 0.0978 0.1057
GraphRec 0.1915 0.2912 0.3623 0.1279 0.1812 0.1956 0.0931 0.1231 0.1482 0.0784 0.0930 0.0992
PinSage 0.2105 0.3049 0.3863 0.1539 0.1855 0.2137 0.0934 0.1257 0.1502 0.0844 0.0998 0.1046
NGCF 0.1992 0.3042 0.3753 0.1450 0.1828 0.2041 0.0891 0.1189 0.1399 0.0819 0.0945 0.0998
DiffNet-nf 0.2101 0.3195 0.3982 0.1535 0.1928 0.2164 0.1087 0.1408 0.1709 0.0979 0.1089 0.1192
DiffNet 0.2276 0.3461 0.4217 0.1679 0.2118 0.2307 0.1178 0.1657 0.1855 0.1072 0.1271 0.1301
DiffNet++-nf 0.2112 0.3230 0.3989 0.1551 0.1942 0.2176 0.1140 0.1503 0.1799 0.1021 0.1169 0.1256
DiffNet++ 0.2503 0.3694 0.4493 0.1841 0.2263 0.2497 0.1412 0.1832 0.2203 0.1269 0.1420 0.1544

TABLE 6
Overall Comparison With Different Top-N Values (D=64)on Epinions and Dianping (Attributes is not Available)

Model Epinions Dianping

HR NDCG HR NDCG

N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15

BPR 0.2005 0.2822 0.3256 0.1526 0.1812 0.1917 0.1412 0.2299 0.2864 0.1024 0.1319 0.1482
SocialMF 0.2098 0.2893 0.3431 0.1575 0.1857 0.2016 0.1546 0.2410 0.3063 0.1111 0.1416 0.1608
TrustSVD 0.2102 0.2884 0.3396 0.1574 0.1848 0.2001 0.1521 0.2341 0.2966 0.1100 0.1390 0.1574
CNSR 0.2151 0.2898 0.3444 0.1592 0.1876 0.2035 0.1564 0.2418 0.3077 0.1132 0.1435 0.1621
GraphRec 0.2335 0.3156 0.3620 0.1764 0.2051 0.2199 0.1725 0.2622 0.3300 0.1240 0.1556 0.1755
PinSage 0.2207 0.3073 0.3073 0.1589 0.1908 0.2008 0.1631 0.2552 0.3177 0.1141 0.1489 0.1664
NGCF 0.2308 0.3192 0.3777 0.1706 0.1958 0.2131 0.1695 0.2584 0.3263 0.1220 0.1534 0.1733
DiffNet 0.2457 0.3407 0.3967 0.1857 0.2191 0.2357 0.1734 0.2645 0.3302 0.1235 0.1555 0.1748
DiffNet++ 0.2602 0.3503 0.4051 0.1973 0.2288 0.2450 0.1798 0.2713 0.3375 0.1281 0.1605 0.1802

4762 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 10, OCTOBER 2022

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 20,2022 at 10:33:51 UTC from IEEE Xplore.  Restrictions apply. 



4.2 Performance Under Different Sparsity

In this part, we would like to investigate how different mod-
els perform under different rating sparsity. Specifically, we
first group users into different interest groups based on the
number of observed ratings of each user. E.g., ½8; 16Þ means
each user has at least 8 rating records and less than 16 rating
records. Then, we calculate the average performance of each
interest group. The sparsity analysis on Yelp dataset and
Flickr dataset are shown in Figs. 3a and 3b respectively.
From both datasets, we observe that as users have more rat-
ings, the overall performance increases among all models.
This is quite reasonable as all models could have more user
behavior data for user embedding modeling. Our proposed
models consistently improve all baselines, and especially
show larger improvements on sparser dataset. E.g., when
users have less than 8 rating records, DiffNet++ improves
22.4 and 45.0 percent over the best baseline on Yelp and
Flickr respectively.

4.3 Detailed Model Analysis

Diffusion Depth K. The number of layer K is very important,
as it determines the diffusion depth of different graphs. We
show the results of different K values for two datasets with
attributes in Table 7. The column of “Improve” shows the per-
formance changes compared to the best setting, i.e., K ¼ 2.

When K increases from 0 to 1, the performance increases
quickly (DiffNet++ degenerates to BPR when K ¼ 0), and it
achieves the best performance when K ¼ 2. However, when
we continue to increase the layer to 3, the performance drops.
We empirically conclude that 2-hop higher-order social inter-
est graph structure is enough for social recommendation.
And adding more layers may introduce unnecessary neigh-
bors in this process, leading to performance decrease.
Other related studies have also empirically found similar
trends [21], [47].

The Effects of Multi-Level Attention. A key characteristic of
our proposed model is the multi-level attention modeling
by fusing the social network and interest network for rec-
ommendation. In this subsection, we discuss the effects of
different attention mechanisms. We show the results of dif-
ferent attention modeling combinations in in Table 8, with
“AVG” means we directly set the equal attention weights
without any attention learning process. As can be observed
from this table, either the node level attention or the graph
level attention modeling could improve the recommenda-
tion results, with the graph level attention shows better
results. When combing both the node level attention and
the graph level attention, the performance can be further
improved. E.g., for the Flickr dataset, the graph level atten-
tion improves more than 4 percent compared to the results

Fig. 3. Performance under different rating sparsity on two datasets.

TABLE 7
HR@10 and NDCG@10 Performance With Different Diffusion Depth K (D ¼ 64)

DepthK Yelp Flickr

HR Improve NDCG Improve HR Improve NDCG Improve

K = 2 0.3694 - 0.2263 - 0.1832 - 0.1420 -
K = 0 0.2632 �28.32% 0.1554 �30.81% 0.0795 �55.21% 0.0628 �53.86%
K = 1 0.3566 �2.89% 0.2159 �3.87% 0.1676 �5.58% 0.1283 �5.73%
K = 3 0.3626 �1.25% 0.2215 �1.38% 0.1743 �1.80% 0.1347 �1.03%

TABLE 8
HR@10 and NDCG@10 Performance With Different Attentional Variants (D = 64)

Graph Attention Node Attention Yelp Flickr

HR Improve NDCG Improve HR Improve NDCG Improve

AVG AVG 0.3631 - 0.2224 - 0.1733 - 0.1329 -
AVG ATT 0.3657 +0.72% 0.2235 +0.49% 0.1792 +3.40% 0.1368 +2.93%
ATT AVG 0.3662 +0.85% 0.2249 +1.12% 0.1814 +4.67% 0.1387 +4.36%
ATT ATT 0.3694 +1.74% 0.2263 +1.75% 0.1832 +5.71% 0.1420 +6.85%
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of the average attention, and combining the node level
attention further improves about 2 percent. However, the
improvement of attention modeling varies in different data-
sets, with the results of the Yelp dataset is not as significant
as the Flickr dataset. This observation implies that the use-
fulness of considering the importance strength of different
elements in the modeling process varies, and our proposed
multi-level attention modeling could adapt to different
datasets’ requirements.

Attention Value Analysis. For each user a at layer k, the
graph level attention weights of gk

a1 and gk
a2 denote the

social influence diffusion weight and the interest diffusion
weight. A larger value of gk

a1 indicates the social influence
diffusion process is more important to capture the user
embedding learning with less influence from the interest
network. In Table 9, we show the learned mean and vari-
ance of all users’ attention weights at the graph level at each
layer k. Since both datasets receive the best performance at
K ¼ 2, we show the attention weights at the first diffusion
layer (k ¼ 1) and the second diffusion layer k ¼ 2. There are
several interesting findings. First, we observe for both data-
sets, at the first diffusion layer with k ¼ 1, the average value
of the social influence strength g1a1 are very high, indicating
the first-order social neighbors play a very important role in
representing each user’s first layer representation. This is
quite reasonable as users’ rating behavior are very sparse,
and leveraging the first order social neighbors could largely
improve the recommendation performance. When k ¼ 2,
the average social influence strength g2

a1 varies among the
two datasets, with the Yelp dataset shows a larger average
social influence weight, while the Flickr dataset shows a
larger interest influence weight with quite small value of
average social influence weight. We guess a possible reason
is that, as shown in Table 1, Flickr dataset shows denser
social links compared to the Yelp dataset, with a consider-
able amount of directed social links at the first diffusion
layer, the average weight of the second layer social neigh-
bors decreases.

Runtime. In Table 10, we show the runtime of each model
on four datasets. Among the four datastes, Epinions andDia-
nping do not have any attribute information. For fair com-
parison, we perform experiments on a same server. The
server has an Intel i9 CPU, 2 Titan RTX 24G, and 64G mem-
ory. The classical BPRmodel costs the least time, followed by
the shallow latent factor based social recommendation mod-
els of SocailMF and TrustSVD. CNSR has longer runtime as
it needs to update both the user embedding learned from
user-item behavior, as well as the social embedding learned
from user-user behavior. The graph based models cost more
time than classical models. Specifically, NGCF and DiffNet
have similar time complexity as they capture either the inter-
est diffusion or influence diffusion. By injecting both the

interest diffusion and influence diffusion process, DiffNet++
costs more time than these two neural graph models. Graph-
Rec costs the most time on the two datasets without attrib-
utes. The reason is that, though GraphRec only considers
one-hop graph structure, it adopts a deep neural architecture
for modeling the complex interactions between users and
items. As we need to use the deep neural architecture for
each user-item rating record, GraphRec costs more time than
the inner-product based prediction function in DiffNet++.
On Yelp and Flickr, these two datasets have attribute infor-
mation as input, and the DiffNet++ model needs the fusion
layer to fuse attribute and free embeddings, while GraphRec
does not have any attribute fusion. Therefore, DiffNet++
costs more time than GraphRec on the two datasets with
attributes. The average training time of DiffNet++ on the
largest Dianping dataset is about 25 seconds for one epoch,
and it usually takes less than 100 epoches to reach conver-
gence. Therefore, the total runtime of DiffNet++ is less than 1
hour on the largest dataset, which is also very time efficient.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a neural social and interest diffu-
sion basedmodel, i.e., DiffNet++, for social recommendation.
We argued that, as users play a central role in social network
and interest network, jointly modeling the higher-order
structure of these two networks would mutually enhance
each other. By formulating the social recommendation as a
heterogeneous graph, we recursively learned the user
embedding from convolutions on user social neighbors and
interest neighbors, such that both the higher-order social
structure and higher-order interest network are directly
injected in the user modeling process. Furthermore, we
designed amulti-level attention network to attentively aggre-
gate the graph and node level representations for better user
modeling. Experimental results on two real-world datasets
clearly showed the effectiveness of our proposed model. In
the future, we would like to explore the graph reasoning
models to explain the paths for users’ behaviors.
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