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Abstract Student cognitive modeling is a fundamental task in
the intelligence education field. It serves as the basis for various
downstream  applications, such as student profiling,
personalized educational content recommendation, and
adaptive testing. Cognitive Diagnosis (CD) and Knowledge
Tracing (KT) are two mainstream categories for student
cognitive modeling, which measure the cognitive ability from a
limited time (e.g., an exam) and the learning ability dynamics
over a long period (e.g., learning records from a year),
respectively. Recent efforts have been dedicated to the
development of open-source code libraries for student cognitive
modeling. However, existing libraries often focus on a
particular category and overlook the relationships between
them.  Additionally, these libraries lack sufficient
modularization, which hinders reusability. To address these
limitations, we have developed a unified PyTorch-based library
EduStudio, which unifies CD and KT for student cognitive
modeling. The design philosophy of EduStudio is from two
folds. From a horizontal perspective, EduStudio employs the
modularization that separates the main step pipeline of each
algorithm. From a vertical perspective, we use templates with
the inheritance style to implement each module. We also
provide eco-services of EduStudio, such as the repository that
collects resources about student cognitive modeling and the
leaderboard that demonstrates comparison among models. Our
open-source project is available at the website of edustudio.ai.

Keywords open-source library, student cognitive modeling,
intelligence education

1 Introduction

Artificial Intelligence for Education (AI4ED) [1-3] has
revolutionized traditional education and emerged as a trending
topic. These modern educational platforms are dedicated to
leveraging artificial intelligence technology to provide
personalized and high-quality educational experiences for
students. Student cognitive modeling [4], as a fundamental
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task in the intelligent tutoring system, aims to capture
students’ cognitive ability on diverse aspects (typically various
knowledge components (KC)) through their historical learning
behaviors (especially exercise answering records). Accurate
student cognitive modeling can facilitate a wide range of
downstream tasks, such as student profiling [5,6], education
resource recommendation [7—14], adaptive testing [15], and so
on.

With the rapid progress of student cognitive modeling, it is
imperative for researchers to develop a project for easily
reproducing these published algorithms and designing new
algorithms with minimum effort. However, this is not trivial
as current student cognitive modeling works are rather
fragmented. Researchers put repeated efforts into finding
related datasets and reproducing algorithms. Therefore, there
is a need to reconsider the implementation of student cognitive
modeling techniques. In this paper, we develop a PyTorch-
based library called EduStudio for student cognitive modeling
and provide a range of user-friendly eco-services to enhance
EduStudio. We are committed to promoting research and
development for the AI4ED community.

EduStudio integrates models in both cognitive diagnosis
(CD) [16,17] and knowledge tracing (KT) [18-20], which are
two mainstream categories in student cognitive modeling
field. Figure 1 shows the widely used application scenarios of
these two categories. Specifically, CD is often used to quantify
a student’s cognitive ability (e.g., the mastery degree of a
specific KC) with well-designed questions from an assessment
or test. For instance, a well-known scenario of CD is the
Programme for International Student Assessment (PISA)
[21,22], with around 690,000 students took the PISA
assessment in 2022, representing about 29 million 15-year-
olds from schools in 81 participating countries and economies
[23].

CD is based on the static cognitive assumption and deals
with the challenge of how to better quantify student ability
with sparse student records. In contrast, KT focuses on
tracking students’ knowledge states over a long period with
the dynamic cognitive assumption. Many online tutoring APPs
are equipped with KT technologies. As such, these APPS can
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Fig. 1

provide personalized exercise recommendation to improve
student’s abilities as they can see feedbacks after answering
one exercise) and predict their future performances by mining
their historical learning behaviors [7,24,25]. In summary,
these two categories utilize student answering records to mine
students’ cognitive ability. However, due to the differences in
cognitive modeling approaches between CD and KT, existing
libraries often focus on a particular category and overlook the
relationships between them.

Recent efforts have been devoted to developing libraries for
student cognitive modeling [26-28]. They consider static or
dynamic modeling separately and implement some cognitive
modeling models. Nevertheless, we have identified some
shortcomings and limitations in their endeavors to advance the
community. Existing libraries: 1) Focus on a single category,
which ignore the relation between the two categories. 2) Lack
sufficient abstraction, which leads to poor flexibility and
reusability. 3) Lack adequate eco-services, which limits the
development of the community. Therefore, we desire to
develop a high reusable and flexible library including CD and
KT, with the comprehensive eco-services. The comparison of
our EduStudio with other libraries is detailed in Section 7. The
primary advanced features of our EduStudio are summarized
as follows:

e We develop a unified library that combines the CD and
KT under the student cognitive modeling view. Unlike
existing open-source libraries that primarily focus on a
single category, we not only enable the reusability
within individual category but also facilitate sufficient
reusability between two categories. We aim to facilitate
communication between two research groups for better

Introduction to student cognitive modeling, including CD and KT

student cognitive modeling.

e We provide the modularized and templatized design
when implementing models for better flexibility and
reusability. Existing libraries often lack clear
boundaries between the individual procedures in the
algorithmic pipeline, leading to poor flexibility. We
decompose each algorithm pipeline into six modules,
and propose horizontal modularization flow of each
algorithm. Besides, we extract the commonality of each
module with reusable templates, and implement vertical
templatization design of each module for high-level
management.

e We offer a range of eco-services surrounding
EduStudio, which can further enable more researchers
to understand and quickly participate in the field of
student cognitive modeling. We provide a Github
repository that collects valuable resources for student
cognitive modeling. In addition, we develop a
Leaderboard website to provide a comprehensive
comparison of various models.

2 Background

In this section, we introduce the category and data description
of student cognitive modeling. Subsequently, we provide a
review of existing works including CD and KT.

2.1 Task and data description

Task description. Student cognitive modeling aims to model
students’ cognitive states based on learning data, such as their
interactive records of answering exercises. Classified from the
perspective of variation in cognitive states, CD and KT are
two mainstream categories for modeling students’ cognitive
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states. CD is typically used to assess students’ static cognitive
states on knowledge components. It helps to understand
students’ knowledge mastery in specific domains and identify
their weaknesses and areas for improvement. KT focuses more
on monitoring students’ dynamic cognitive changes and
learning progress. It tracks the development of students’
cognitive ability at different time steps and identifies their
learning trajectories and trends. Therefore, CD and KT are two
types of tasks proposed from different perspectives of
cognitive state variation.

Data description. Here we discuss the various types of data
involved in student cognitive modeling. As shown in Fig. 2,
the dataset includes the interactive records of students
answering exercises, as well as the relationship information
between the exercises and the KCs. Additionally, the features
of students and exercises, as well as the relations among KCs,
also contain rich information that can enhance the accuracy of
modeling. Various models selectively utilize different features
and data formats based on their requirements.

e Student-side features typically include information
about students’ family background, school background,
and other relevant factors. These pieces of information
are valuable for modeling students’ abilities as prior
knowledge.

e Student-exercise interactions are the fundamental input
for student cognitive modeling. It encompasses
common features such as correctness labels, answering
textual content, and interaction timestamp. In addition,
some studies [29-31] also design diverse forgetting
features via interaction timestamp to capture students’
forgetting characteristics.

e Exercise-side features refer to the content information of
exercises. This includes various modalities such as
textual descriptions, images, and other multimedia
elements associated with the exercises. They are
valuable for modeling the difficulty of exercises and
identifying the KCs they cover.

e Exercise-KC relationships are referred to as Q-matrix
[32] in student cognitive modeling. Q-matrix reveals the
KCs encompassed within each exercise. It serves as a
bridge for establishing student cognition of KCs
through student-exercise interactions.

e KC-side features mainly lies on KC relationships, which
typically fall into two categories: inclusion relationships

Example of data
Student data
Student data: family income, country, ... '."
I
Interaction data: timestamp, device, Inter “‘“i’" dafa
forget features, ... 3
xercise datq
Exercise data: text, image, category, ... T
) ) ) Q;nmn'trix
Q-matrix: Exercise-KC relationship H ,]I,
KC data: name, prerequisite, inclusion, ... KC data

Fig. 2 Data description
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and prerequisite relationships. Inclusion relationships
refer to the coarse-grained KCs that encompass multiple
finer-grained KCs. Prerequisite relationships indicate
that one KC usually be learned before another.

2.2 Existing works
We introduce the development of student cognitive modeling,
including CD and KT.

Cognitive diagnosis. Originating from psychometrics, CD
emerges as a pivotal branch of test theory. Test theory
methods are predominantly formulated on the foundations of
educational and psychometric theories and assumptions [33].
The most exemplary of these is Item Response Theory (IRT)
[34], which integrates factors such as student ability, exercise
difficulty, exercise discrimination, and exercise guess
probability into a logistic function to forecast the probability
of a correct response. Like its predecessor, Classical Test
Theory (CTT) [35], the student ability measured by IRT is on
a macro level. Consequently, subsequent researchers propose
the incorporation of micro-level knowledge structures (e.g., Q-
matrix) into cognitive modeling [32,36,37], improving the
interpretability of the model.

With the emergence of deep learning, the NCDM [38]
model pioneers the use of neural networks to replace simple
logical functions in modeling the complex interactions of
students when answering exercises. Subsequently, more and
more neural CD models [39-42] further refine the model
architecture to enhance the prediction performance of CD.
Beyond architectural enhancements, researchers are
progressively integrating diverse data sources including
exercise, student, and KC-side data. For exercise-side data,
CNCD-F [39] and CNCD-Q [39] respectively extract the
reading comprehension difficulty factor and KCs from the
textual content of exercises. For student-side data, ECD [43]
incorporates information such as the student’s family
background into the prediction process of student
performance, while FairCD [44] and FairLISA [45] use
student sensitive attributes for fairness research. Models like
MGCD [46] utilize features such as the class identifier to
consider group-level CD. Regarding KC-side data, RCD [47]
and HierCDF [48] introduce the prerequisite relationships of
KCs into CD to further enhance performance, while DCD [49]
uses the inclusion relationships of KCs for CD in the scenario
where there is substantial absence of KC annotations in
exercises.

Knowledge tracing. In the field of KT, its early iterations
primarily encompassed probabilistic models and logical
models. Probabilistic models assume that the learning process
follows a Markov process, where students’ latent knowledge
states can be estimated by their observed performance [19,50].
Within this paradigm, models such as BKT [51] and DBKT
[52] stand out as exemplary. Logistic models constitute a
significant category of models grounded in logistic functions,
which encapsulate the probability of correctly answering
exercises within a mathematical framework that accounts for
both student and KC parameters. Notable models within this
class include LFA [53], PFA [54], and KTM [55].

In the era of deep learning, the evolution of KT is
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manifested through the sophisticated network architectures to
enhance performance. The primary characteristic lies in the
incorporation of diverse network structures to model the
dynamic cognition of students. DKT [24] pioneers the
introduction of RNN and LSTM to model the evolving
cognitive states of students. Subsequently, an array of models
based on LSTM or RNN architectures have been proposed
[29,56-58]. Inspired by memory-augmented neural networks,
subsequent models begin to enhance the representation of
students’ memory processes [59-61]. With the rise of the
transformer, there has been a surge in utilizing attention-based
architectures [62—64]. Since the interactions between students
and exercises, the relationships between exercises and KCs,
and the interconnections among KCs can all be represented as
graph structures, some researches explore graph-based KT
[65,66].

Due to the similarities between CD and KT, some works
that integrate CD and KT have also been proposed [67]. A
typical category of such work is to use CD models to enhance
the interpretability of traditional KT models [33,68,69]. For
instance, Deep-IRT [68] is a synthesis of the IRT [34] model
and DKVMN [59] to make deep learning-based KT
interpretable. DynamicCD [33] incorporate educational priors
from CD models into KT for better interpretability.

3 Overview of EduStudio

In this section, we first summarize the challenges faced in
developing EduStudio when unifying CD and KT. To address
these challenges, we present the design philosophy in Fig. 3.
Grounded in the design philosophy, the overall architecture is
depicted in Fig. 4.

3.1 Challenges of developing EduStudio

After introducing the background, we can observe that the
data usage of student cognitive modeling is diverse and there
are commonalities and differences in between CD and KT.
Here we mainly analyzes the challenges of the process of
developing a unified library for CD and KT. The solutions to
these challenges are detailed in Section 4.7.

e Unified management of multifaceted data. Data
utilized by CD and KT, relating to students, exercises,

and KCs, varies in format among different dataset
publishers. Standardizing data file formats and
maintaining  commonality for  effective  data
management is a pressing issue.

e Ensuring reusability and flexibility in the context of
unifying CD and KT. Since both CD and KT are
methods for student cognitive modeling, there are
commonalities and differences in their approaches.
Therefore, ensuring reusability for commonalities and
ensuring flexibility for differences is a major challenge.

o Compatibility for future task scenarios. In both CD
and KT, there are various task scenarios, such as
fairness, cold start, and so on. When designing
EduStudio, it is necessary to consider compatibility
with both existing task scenarios and unknown future
task scenarios.

3.2 Design philosophy

3.2.1 Horizontal modularization

From the horizontal modularization viewpoint, we decompose
the general algorithmic pipeline into six modules:
Configuration  reading, data  preparation, model

implementation, training control, model evaluation, and log
storage.

e Configuration reading (Step 1) aims to collect,
categorize, and deliver configurations from different
configuration portals.

e Data preparation (Step 2) aims to read raw data files
from the disk and then convert them into model-friendly
data objects.

e Model implementation (Step 3) refers to the process of
implementing the structure of each model and
facilitating the reuse of model components.

e Training control (Step 4) focuses on the training process
of various models.

® Model evaluation (Step 5) focuses
implementation of various evaluation metrics.

e Log storage (Step 6) aims to implement storage
specifications when storing generated data.

on the

Horizontal modularization establishes clear boundaries for
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Fig.3 EduStudio’s design philosophy incorporates horizontal modularization and vertical templatization to enhance flexibility and reusability.
Horizontal modularization: We decompose the general algorithmic pipeline into six modules to enhance flexibility. Vertical templatization: We
implement reusable templates within the modules for Steps 2—5 to achieve high-level management of complex elements. Since all models share
the same configuration reading method and log storage path management, there is no need for the template-based design for them
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Storage layer (Step 6)

Temporary storage Path management

Template layer (Steps 2—5)
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Config file
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Fig. 4 The overall architecture of EduStudio

each step throughout the algorithm pipeline, facilitating the
incorporation of new things to individual modules.

3.2.2 Vertical templatization

When it comes to a specific module, we observe that there are
numerous elements within the module that require
implementation and management. Without proper high-level
management of these elements, subsequent development and
reusability can become overly complex. Thus, we implement
vertical templatization design within the modules for Steps
2-5 in Fig. 3. We manage these complex elements within the
modules using templates, which ensures a well-organized
structure. Furthermore, we have developed numerous base
templates and created new templates by inheriting from these
base templates. These templates are reusable by the models,
enhancing their reusability. It should be noted that since all
models share the same configuration reading method and log
storage path management, these two modules are called in a
common, model-independent area. In this case, there is no
need for the template-based design for them.

3.3 Opverall architecture

Based on the above design philosophy, the overall architecture
of EduStudio is illustrated in Fig. 4. Steps 2-5 are four
templatized modules, while Steps 1 and 6 are common
modules that are shared by all the models.

For the four templatized modules (i.e., data preparation,
model implementation, training control, and model
evaluation), we abstract the intricate elements within each
module into various reusable templates. Within each
templatized module, we implement multiple templates with
inheritance relationships. Each template inherits from a basic
template prefixed with BaseBase. These basic templates only
provide basic functionalities to maintain the fundamental
operation of the library. With this templatized design, we can
easily extend a new template within any module, enabling
reusability when implementing new models.

In addition to the aforementioned four modules, there are
two additional modules (i.e., configuration reading and log
storage) that are shared by all models. For configuration
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reading, we prioritize and categorize the configurations from
four flexible configuration portals. This allows us to identify
five categories of configurations, where four categories
correspond to the four templatized modules, and the last
category involves framework-specific configurations. For Log
Storage, we store logs from failed or ongoing runs in
temporary storage, while successful run logs are stored
archivally. This allows users to conveniently discard failed
experiments.

4 Design of EduStudio

We organize this section into multiple subsections based on
horizontal modularization. Within each subsection, we delve
into our vertical templatization design. Ultimately, we provide
an in-depth explanation of addressing challenges that are
described in Section 3.1.

4.1 Configuration reading

Configuration Reading aims to collect, categorize, and deliver
configurations from different configuration portals. We first
collect configurations from four flexible configuration portals
(e.g., configuration file and command line). Then we retain the
highest-priority configurations and categorize them into five
groups: data template configuration, model template
configuration, training template configuration, evaluation
template configuration, and frame configuration (library-
specific configurations). Categorized configuration objects
make it easier for users to find and utilize them. Finally, we
deliver categorized configuration objects to their
corresponding modules.

4.2 Data preparation

Data Preparation aims to convert raw data from the hard disk
into model-friendly data objects. Standardizing the data
preparation pipeline is challenging in the library design
because various student cognitive models utilize data with
diverse content and formats. For example, CD handles
interaction data ignoring timestamp, while KT handles
sequential interaction data. Additionally, models may
selectively utilize features such as relations, contexts, and
other relevant data features.

To address the aforementioned challenges, let us first clarify
the workflow of data preparation, as shown in Fig. 5. The first
step is to load the raw data from the hard disk. Then, a series
of processing steps are performed to obtain model-friendly
data objects. Finally, these data objects are passed on to other
modules. We simplify the data preparation into three stages:

e Data loading: Loading necessary data from the hard
disk.

e Data processing: Convert the raw data into model-
friendly data objects by a range of data processing
operations.

e Data delivery: Deliver model-friendly data objects to
other modules.

Among these three stages, data processing is the most
complex and feature-rich stage in data preparation. Therefore,
we have established a set of standardized protocols and
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final_kwargs
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Fig.5 Data Preparation includes the loading, processing, and delivery
stages. We have established a set of standardized protocols and developed a
series of atomic data operations for data processing (Section 4.2.1). We utilize
data templates (Section 4.2.2) to manage and control the three stages,
enabling reusable data preparation

developed a series of atomic data operations for data
processing (detailed in Section 4.2.1). These protocols and
operations help streamline and enhance the data processing
stage, making it more efficient and effective. Finally, we
utilize the data template (detailed in Section 4.2.2) to manage
and control these three stages, enabling a complete and
reusable data preparation process. The data template ensures
consistency and standardization throughout the stages,
facilitating efficient data preparation for the following steps.

4.2.1 Protocols for data processing

In order to standardize the complete workflow of data
preparation, we propose three protocols for the data
processing stage: data status, middle data format, and atomic
data operation protocols.

e Data status protocol. We categorize data into three
statuses: 1) inconsistent rawdata: the original data
format provided by the dataset publisher. This data
format is diverse and lacks unification; 2) standardized
middata: the standardized middle data format defined
by EduStudio. This unified format is friendly for
researchers to read; 3) model-friendly cachedata: the
data format that is convenient for model usage. In
EduStudio, we implement data cache functionality,
which allows users to bypass the data processing
procedure in subsequent experiments after saving
cached data from the previous experiment.

e Middle data format protocol. As mentioned in the Data
Status Protocol, the middle data is the standardized data
format. We define some standardized data files for
student-exercise interaction data, student-side features,
exercise-side features and so on, which is detailed in
EduStudio official website.

e Atomic data operation protocol. To achieve reusability
and flexibility in data preparation, we propose the
concept of atomic data operation to convert the whole
data processing into some reusable atomic data

operations. From rawdata to middata, we require users
to specify one atomic data operation (i.e., a Python class
prefixed with R2M) to convert raw data into
standardized middata. From middata to cachedata, we
allow users to specify multiple atomic data operations
(i.e., multiple python classes prefixed with M2C)
sequentially.

Founded on above protocols, we offer a comprehensive
range of atomic data operations to facilitate the
transformation of rawdata into middata, and subsequently into
cachedata. These operations include R2M (Rawdata to
Middata) and M2C (Middata to Cachedata) atomic operations.
The flexibility to combine and substitute atomic operations
enables flexibility.

e Atomic data operations for transformation of rawdata to
middata: Due to the diverse nature of rawdata in
different datasets, we provide a total of 18 R2M
operations for all inherited datasets within the library.
These operations are designed to transform the raw data
into an intermediate data format, facilitating subsequent
processing and analysis.

e Atomic data operations for transformation of middata to
cachedata: To ensure the compatibility of data objects
with models, particularly cachedata, we meticulously
devise a range of M2C operations. These operations can
be broadly classified into four main categories based on
the type of data processing: data cleaning, data
conversion, data partition, and data generation. As
indicated in Table 1, data cleaning focuses on refining
the data by applying filters to students or exercises and
addressing missing values. Data conversion aims to
modify the data format. We specifically design
operations to accommodate the triple form in CD and
the sequence form in KT. Data partition involves
dividing the entire dataset into training, validation, and
test sets for CD and KT. Data generation aims to
produce additional features that can enhance prediction
capabilities, such as KC inclusion relationships and KC
prerequisite relationships.

4.2.2 Data templates

Data templates ensure consistency and standardization
throughout the three stages of data preparation, facilitating
efficient data preparation for the following steps. Table 2
demonstrates three highly reusable data templates: the base
template, general template, and educational template. The base
data template is not specific to educational data and provides
basic functionalities to maintain the fundamental operation of
the library. The general template inherits from the base
template and focuses on scenarios involving simple
educational data with only student-exercise interaction data. It
implements three protocols in data preparation. The
educational template inherits from the general template and
includes additional student-side and exercise-side features.
When implementing a new data template, the focus lies in
loading data and composing various atomic data operations.
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Table 1 Representative M2C atomic data operations that transform data from middata to cachedata

M2C operation type M2C operation name

Description

M2C_FilterRecords4CD

Data cleaning M2C_Label2Int

Filter some students or exercises according specific conditions
Binarization for answering response

M2C_ReMapld

Dat: i .
ata conversion M2C_BuildSeqlnterFeats

Identifier remapping of discrete features
Build sample format for KT

M2C_DataSplitdCD

Data partition M2C_DataSplit4KT

Data partition for CD
Data partition for KT

M2C_GenQMat

Data generation M2C_BuildKCRelation

Generate Q-matrix
Build knowledge component relation graph

Table 2 Description of representative templates for four templatized modules in EduStudio

Template type Template name Parent template Description
BaseDataTPL / The basic class of data templates
Data templates GeneralDataTPL BaseDataTPL Implement all protocols for data processing
EduDataTPL GeneralDataTPL Load extra student-side and excise-side features based on GeneralDataTPL
BaseModel / The basic class of model templates
Model templates . o .
GDBaseModel BaseModel Provide utilities for gradient descent models based on BaseModel
BaseTrainTPL / The basic class of training templates
. GDBaseTrainTPL BaseTrainTPL Provide utilities for gradient descent models based on BaseTrainTPL
Training templates . . . .
GeneralTrainTPL GDBaseTrainTPL The TrainTPL for general training
Adversarial TrainTPL GeneralTrainTPL The TrainTPL for adversarial training
BaseEvalTPL / The basic class of evaluation templates

PredictionEvalTPL
InterpretabilityEvalTPL
IdentifiabilityEvalTPL
FairnessEvalTPL

BaseEvalTPL
BaseEvalTPL
BaseEvalTPL
BaseEvalTPL

Evaluation templates

Student performance prediction evaluation

Student cognitive representation interpretability evaluation
Student cognitive representation identifiability evaluation
Student cognitive fairness evaluation

4.3 Model implementation

Model Implementation refers to the process of implementing
the structure of each model and facilitating the reuse of model
components. We designed two basic model templates:
Base (BaseModelTPL) and Gradient Descent Base
(GDBaseModelTPL). By inheriting the basic model templates,
we collectively implemented 45 student cognitive models.

As listed in Table 2, there are two basic model templates,
namely BaseModelTPL and GDBaseModel TPL, which define
the specifications for model implementation in EduStudio.
The difference between BaseModelTPL and
GDBaseModelTPL lies in the fact that the latter builds upon
the former by considering models that can be optimized using
gradient descent methods. GDBaseModelTPL provides
additional tools and functionalities specifically designed for
gradient descent-based optimization models. All models are
required to inherit from one of these basic model templates
and adhere to the corresponding interface functions. For
example, we specify the interface function of
add_extra_data(-) for loading extra required data (such as Q-
matrix, KC relationships) except student-exercise interactions.
Additionally, we define get loss dict(-) for returning a loss
dictionary that contains multiple losses.

During the implementation process of the model, we
develop reusable components for portability. For instance, we
implement a Positive MultiLayer Perceptron (PosMLP) to
support the monotonicity assumption [38] that is widely used
in CD models for interpretability. The monotonicity
assumption states that the probability of a correct response to
an exercise increases monotonically with any dimension of the
student’s cognitive proficiency.

We currently implement 16 models for CD and 29 models
for KT in EduStudio. We arrange implemented models in
terms of data usage and technique usage in Table 3.

4.4 Training control
Training control focuses on the training methods of different
models. It is worth noting that in the training control
procedure, some implemented training templates are shared
between the CD and KT. This highlights the ability of
EduStudio to promote significant reusability between them.
For the models that have been implemented so far, we
summarize three mainstream training paradigms for student
cognitive modeling and provide corresponding training
template for each training paradigm: general training
(General TrainTPL) and adversarial training
(AdversarialTrainTPL), as listed in Table 2. Their ancestral
training template (i.e., BaseTrainTPL) provides the necessary
functionality to maintain the basic operation of the library.
GDBaseTrainTPL based on BaseTrainTPL provides some
utilities for gradient descent based models. When a new
training paradigm comes, we can inherit these base training
templates to implement a new training template.

4.5 Model evaluation

Model evaluation primarily focuses on the implementation of
various evaluation metrics. They can be shared by all CD and
KT models according to their respective needs. As illustrated
in Table 2, we currently implement four kinds of important
metrics for student cognitive models.

e Student performance prediction evaluation aims to
evaluate the prediction performance that students’
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Table 3 Implemented 45 student cognitive models in EduStudio, including 16 CD models and 29 KT models
Category Model Publish Year Data Technique
IRT [34] - 1960 Interaction IRT
MIRT [70] - 1982 Interaction IRT
DINA [32] JEBS 2009 Interaction, Q-matrix -
NCDM [38] AAAI 2020 Interaction, Q-matrix MLP, IRT
CDGK [40] CIKM 2021 Interaction, Q-matrix MLP, IRT
MGCD [46] ICDM 2021 Interaction, Q-matrix, Student Features Attention
RCD [47] SIGIR 2021 Interaction, Q-matrix, KC Prerequisite Relationships Graph Neural Network
Static cognitive modeling ECD [43] SIGKDD 2021 Interaction, Q-matrix, Student Features Hierarchical Attention
(CD) CNCD-Q [39] TKDE 2022 Interaction, Q-matrix NCDM
CNCD-F [39] TKDE 2022 Interaction, Q-matrix, Exercise Texts TextCNN, NCDM
KaNCD [39] TKDE 2022 Interaction, Q-matrix NCDM
KSCD [41] CIKM 2022 Interaction, Q-matrix NCDM
CDMFKC [42] CIKM 2022 Interaction, Q-matrix NCDM
HierCDF [48] SIGKDD 2022 Interaction, Q-matrix, KC Prerequisite Relationships Bayesian Network
FairCD [44] SCIS 2023 Interaction, Q-matrix, Student Features Disentanglement, Adversarial
DCD [49] NeurIPS 2023 Interaction, Q-matrix, KC Inclusion Relationships ~ Disentanglement, VAE
DKT [24] NeurIPS 2015 Interaction RNN/LSTM
DKVMN [59] WwWw 2017 Interaction Memory
DKT DSC [57] ICDM 2018 Interaction RNN/LSTM
EERNN [71] AAAI 2018 Interaction LSTM, Attention
DKT+ [56] L@S 2018 Interaction RNN/LSTM
SAKT [62] EDM 2019 Interaction Attention
SKVMN [60] SIGIR 2019 Interaction Memory
Deep-IRT [68] EDM 2019 Interaction Memory, IRT
KQN [72] LAK 2019 Interaction GRU/LSTM
DKTForget [29] WWW 2019 Interaction, Q-matrix RNN/LSTM
GKT [65] WI 2019 Interaction Graph Neural Network
EKT [61] TKDE 2019 Interaction, Q-matrix, Exercise Texts LSTM, Attention, Memory
qDKT [58] EDM 2020 Interaction RNN/LSTM
. . . AKT [73] SIGKDD 2020 Interaction, Q-matrix Attention
g(y}‘;‘m‘c cognitive modeling - - 1 [74) SIGIR 2020 Interaction CNN
RKT [75] CIKM 2020 Interaction, Exercise Relation Graph Attention
SAINT [63] L@S 2020 Interaction, Exercise Features Attention, Transformer
SAINTH [64] LAK 2021 Interaction, Exercise Features Attention, Transformer
ATKT [76] ACM MM 2021 Interaction, Q-matrix Attention, LSTM
IEKT [77] SIGIR 2021 Interaction, Q-matrix GRU
LPKT [30] SIGKDD 2021 Interaction, Q-matrix GRU, MLP
HawkesKT [78] WSDM 2021 Interaction, Q-matrix Hawkes Process
CT-NCM [79] 1IJCAI 2022 Interaction, Q-matrix Hawkes Process, LSTM
LPKT-S [31] TKDE 2022 Interaction, Q-matrix GRU, MLP
CL4KT [80] WwWw 2022 Interaction, Q-matrix Transformer, Contrastive Learning
DIMKT [81] SIGIR 2022 Interaction, Q-matrix Sequential Neural Network
QIKT [82] AAAI 2023 Interaction, Q-matrix LSTM, IRT
SimpleKT [83] ICLR 2023 Interaction, Q-matrix Attention

DTransformer [84] WWW

2023

Interaction, Q-matrix

Transformer, Contrastive Learning

response to exercises, which usually can be formulated
as a binary classification task. Common metrics include
classification metrics such as Area Under the Curve
(AUC) and ACCuracy (ACC), as well as regression
metrics like Root Mean Square Error (RMSE).

Cognitive representation interpretability evaluation
aims to evaluate the students’ cognitive results. NCDM
[38] proposes the Degree of Agreement (DOA) metric
whose intuition is that if student a has a better mastery
on KC k than student b, then a is more likely to answer
exercises related to k correctly than b. The authors of
IC-IDM [85] consider that the order of interpretable
students’ knowledge proficiencies should be consistent
with the order of response scores on relevant exercises.

They propose the Degree of Consistency (DOC) metric.

e Cognitive representation identifiability evaluation

aims to measure the discrepancy between cognitive
ability of students with the same response distribution.
In general, students exhibiting the same response
distribution should demonstrate similar cognitive
outcomes. IC-IDM [85] proposes the identifiability
concept of various CD models and a quantitative
Identifiability Score (IDS) to measure the identifiability.
Cognitive fairness evaluation aims to measure the
fairness. FairCD [44] explores the fairness in CD and
proposes the Fcp metric whose intuition is that a model
is considered to be fair if the gap between true
proficiency and predicted proficiency is identical across
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different groups. FairLISA [45] utilizes the classical
fairness metrics: Demographic Parity (DP) [86] and
Equal Opportunity (EO) [87] to measure the fairness.

4.6 Log storage

Log Storage aims to implement storage specification when
storing generated data primarily depends on path management.
Table 4 displays the path management!. For path
management of log storage, we specify <project>/temp/
directory to store logs of ongoing or failed experiments as
temporary storage and <project>/archive/ directory to store
logs of completed experiments as archive storage, which is
convenient for users to abandon failed experiments. When it

comes to a detailed experiment log, we stipulate:
1) configjson: store all configuration information;

2) <ID>.log: store training log; 3) resultjson: store model
evaluation result; 4) /pth/: store model parameters at each
epoch or the best epoch.

4.7 Summary

After introducing the detailed design of EduStudio, in this
section, we elaborate our solutions to the challenges discussed
in Section 3.1.

The primary challenge of the EduStudio is to efficiently
reuse the commonalities (reusability) of CD and KT while
preserving their differences (flexibility). We adopt a
modularized and templatized design (detailed in Section 3.2)
to address this challenge. This design philosophy is reflected
in all six delineated modules, which is the content that this
subsection will elaborate on. 1) For the modules of
Configuration Reading and Log Storage, we reuse the same
configuration and storage methodologies across both the CD
and KT, as these two modules are task-agnostic. 2) In the Data
Preparation module, we segment the entire data processing
process into a series of atomic data operations, some of which
are shared between CD and KT, while others are specific to
the tasks of CD and KT, respectively. 3) In the Model
Implementation module, we develop reusable components
between CD and KT for portable model implementation. 4) In
the Training Control module, from the perspective of training
methodologies (such as general training, adversarial training,
and other methods), we develop various training templates that
can be utilized by both CD and KT models. 5) In the Model
Evaluation module, we design distinct evaluation templates
based on different assessment types, some of which are shared
between CD and KT (e.g., the PredictionEvalTPL), while
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others are specific to CD (e.g., the IdentifiabilityEvalTPL).

For the challenge of unified management of multifaceted
data, we devise a series of protocols for data processing
(detailed in Section 4.2) to manage data efficiently. For the
challenge of compatibility for existing task scenarios and
future task scenarios, the modularized and templatized design
can support the challenge in a user-friendly manner. When we
face new task scenarios, what we need to consider is to follow
relevant protocols to develop new templates to support new
models (detailed in Section 5.2).

5 Usage of EduStudio

The code example of running a model is illustrated in Fig. 6.
The function run_edustudio is the entry point for the whole
experimental process including running an existing model and
running a customized model.

5.1 Running existing models

To run an existing model, we need to specify at least the
dataset name (i.e., dataset parameter in run_edustudio) and
template name in each step in the algorithm workflow (i.e., the
cls or clses key in corresponding parameter dictionary). The
corresponding templates of models are detailed in online
Reference Table. In addition, users could also specify some
parameters in the parameter dictionary to replace the lower-
priority configuration. For instance, the emb_size parameter in
modeltpl cfg dict would replace the default configuration of
MyModel.

5.2 Implementing new templates

We can implement a new template by inheriting an existing
template (i.e., a Python class). To run a customized model or
replace an existing template, we just need to specify the
address of corresponding template class as the value of cls or
clses key instead of the value of string type. In Fig. 6, the
training template and model template are customized. We can
specify the class object in cls key to implement customization
instead of the template name. It can be seen that EduStudio is
highly flexible and can cover the new things that appear at
each step. In response to how to implement a new template,
we have placed this part of the content in the developer guide
of the explanatory document, which can help developers
quickly develop custom templates.

6 Eco-services of EduStudio
To further enable more researchers to understand and quickly

Table 4 Path Management in EduStudio. We normalize the user’s working directory

Directory

Note

<project>/data/<dataset>/rawdata/
<project>/data/<dataset>/middata/
<project>/data/<dataset>/cachedata/
<project>/conf/<dataset>/
<project>/archive/<dataset>/<TrainTPL>/<Model TPL>/<ID>
<project>/temp/<dataset>/<TrainTPL>/<Model TPL>/<ID>

Store the raw data files of dataset.

Store data files in a standardized format.

Store data files in a format that is convenient for model usage.
Store configuration files in YAML format.

Store logs of completed experiments.

Store logs of ongoing or failed experiments.

D The symbol <-> denotes the placeholder: 1) <project>: project work directory; 2) <dataset>: dataset name; 3) <ID>: identifier of one experiment;
4) <TrainTPL>: training template class name; 5) <Model TPL>: model template class name.
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from edustudio.quickstart import run_edustudio
from edustudio.model import GDBaseModel
from edustudio.traintpl import GDBaseTrainTPL

class MyModel(GDBaseModel): # inherit basic model template
default_cfg = { . 64, :

class MyTrainTPL(GDBaseTrainTPL): # inherit basic training template
default_cfg = { : 64}

run_edustudio(
dataset= , # specify dataset name
cfg_file_name=None, # specify configuration filename
traintpl_cfg_dict={
: MyTrainTPL, # specify customized training template
: 128 # specify batch size of MyTrainTPL

datatpl_cfg_dict={
3 # specify name of data template
h
modeltpl_cfg_dict={
: MyModel, # specify customized model
: 32 # specify embedding size of MyModel

h
evaltpl_cfg_dict={
# specify evaluation tempates

# specify used metrics in InterpretabilityEvalTPL
: : 1}

f;'ame,cfg,dict=(

}

, # folder path of config file

Fig. 6 Code example of EduStudio usage

participate in the field of student cognitive modeling, we offer
some eco-services including a Github repository and
Leaderboard website surrounding EduStudio.

6.1 Awesome-student-cognitive-modeling repository
The Github repository awesome-student-cognitive-modeling
collects valuable resources about student cognitive modeling:

e Dataset collection and description. Here, we collect
available public datasets for educational data mining
and provide a detailed description for each dataset. We
summarize the characteristics of each dataset to
facilitate researchers in efficient selection of the dataset
that is applicable to their current research.

® Research direction categorization. We summarize
existing research directions in student cognitive
modeling including detailed description, representative
papers, and commonly used datasets of each research
direction. This enables researchers to swiftly
comprehend the student cognitive modeling.

e Paper collection and categorization. We collect and keep
up-to-date with the latest related literature. The
collected papers can be categorized into: 1) research
papers; 2) survey papers; 3) dataset papers. For research
papers, we also make a detailed categorization. We
illustrate data usage, technique usage, and research
direction of each paper, which facilitates researchers to
rapidly grasp the content of these papers.

6.2 Leaderboard

To ensure the reproducibility and comparison of various
student cognitive modeling models, we provide a public
leaderboard. As illustrated in Fig. 7, there are two major
features: Task Selection and Detailed Leaderboard. The
former requires users to specify elements such as task type and
dataset. The latter provides a comprehensive comparison
between models in the form of graphs and tables based on
specified elements.

Please select task and dataset.

Task: @® Cognitive Diagnosis Knowledge Tracing

Dataset: FrcSub @ ASSISTment0910

CLOSE REFERSH
(@)

© Model &

NCOM @ MIRT
Metric

AuC @ RusE () Acc

KSCD @ KaNCD @ IRT & DINA (| COMFKC

Sorted by AUC

S

——————————

Vear Publish Model AUC & RMSE v Logs
2009 Jees DINA 08495 04068
1960 = RT 09105 03452
2020 Al NeoM oo 03817
2022 THOE KaNCD 09157 03380

1982 E MIRT 09162 03364

(b)
Fig. 7 Frontend of leaderboard. (a) Task selection; (b) detailed leaderboard

To support all users in uploading their experiment results,
we provide a portable processing flow. In EduStudio, each
experiment eventually forms a specific log directory (as
depicted in Table 4). After users submit their own experiment
log directory to the specific github repository, the Python
script could process the new experiments and convert them
into .json files required by Leaderboard frontend, and the
Leaderboard frontend will automatically display the new
experimental results according to the json files.

7 Comparison with existing libraries

With the growing attention from researchers toward student
cognitive modeling, in the past few years, there has been a
successive release of open-source algorithm libraries. Like
existing libraries, EduStudio is also built using PyTorch. We
summarize and compare the characteristics of existing student
cognitive modeling libraries in Table 5.

EduStudio boasts a more extensive collection of models
compared to the existing libraries, thereby reducing the burden
of extensive model reimplementation. Specifically, when
considering individual tasks such as CD or KT, the number of
models in EduStudio also surpasses those in the existing
libraries. Regarding the support for datasets, our EduStudio
supports a greater number of datasets. Furthermore, we
provide a comprehensive data preparation process, tailored a
data status protocol, middle data format protocol, and atomic
data operation protocol for the data.

EduStudio supports more features, including 1) From the
perspective of student cognitive modeling, integrating CD and
KT, rather than considering individual tasks alone, which not
only facilitates communication among researchers from both
communities but also encourages the integration of the two
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Table 5 Comparison with existing libraries

EduStudio: towards a unified library for student cognitive modeling

Library #CD Models #KT Models #Datasets Modularization Templatization Eco-services Release year

EduCDM [26] 9 0 0 Low No Datasets 2021

EduKTM [27] 0 9 0 Low No Datasets 2021

pyKT [28] 0 27 13 Low No No 2022
Datasets, papers

EduStudio 16 29 18 High Yes Journals & conferences 2023

Leaderboard

types of student cognitive modeling approaches into one
unified model. 2) The modularized and templatized design
makes the library highly reusable and flexible. 3) Providing
comprehensive eco-services encourages more researchers to
understand and participate in this field.

8 Future directions

In this section, we first discuss the research trend of student
cognitive modeling. Subsequently, we talk about future work
of EduStudio based on the research trend and existing
limitations of EduStudio.

8.1 Research trend of student cognitive modeling

For the research trend of student cognitive modeling, we
summarize some aspects according to current hotspots and
opportunities.

e Data perspective. From data perspective, multimodal
and cold-start research are two promising directions.
Multimodal student cognitive modeling [88,89] aims to
employ multi-modal data from student-side, exercise-
side, and KC-side. Existing related work covers studies
related to cold-start students [90-94], cold-start
exercises [95], and cold-start KCs [96].

Model perspective. From model perspective, student
cognitive modeling with Large Language Models
(LLMs) is emerging as a mainstream trend. LLMs have
recently attracted global attention in various fields,
leading some researchers to incorporate relevant
technologies into student cognitive modeling
[94,97-100].

Evaluation perspective. From evaluation perspective,
beyond accuracy evaluation, recently more researchers
propose various evaluation aspects based on students’
cognitive characteristics. Fairness has consistently been
a trending topic in the trustworthy AI [101-103], and
ensuring fairness in education is also essential.
Recently, an increasing number of researchers are
delving into the fair student cognitive modeling
[44,45,104-107]. IC-IDM  [85] propose the
identifiability evaluation, which aims to measure the
discrepancy between cognitive ability of students with
the same response distribution.

8.2 Future work of EduStudio

Here, we discuss the future work for EduStudio based on
existing limitations and the research trend of student cognitive
modeling.

e Implement models including more scenarios. EduStudio
adopts a modular and template-based design, focusing

on balancing commonality and diversity, but it lacks
sufficient consideration for diverse scenarios of student
cognitive modeling. The model integration for specific
scenarios is not comprehensive (such as the cold-start
[90-94] and causality-based [104,108]). As described in
the research trend, we will see the emergence of more
new scenarios. Therefore, we will keep track of the
developments in the field of student cognitive modeling
and promptly implement relevant models.
e Integrate models of downstream  educational
applications. Student cognitive modeling has a series of
downstream applications, among which the two most
representative types are educational recommendation
systems and Computerized Adaptive Testing (CAT).
Educational recommendation systems aim to
recommend relevant learning resources for students,
such as learning path recommendation [8-10,109],
course recommendation [110,111], and exercise
recommendation [11,112,113]. CAT aims to provide
tests that adapt dynamically to each student by tailoring
test exercises based on the student’s performance [114].
The CD model is an essential component of CAT, as
CAT requires CD to continuously assess students’
cognitive states [115,116]. In the future, we may
consider integrating models of downstream applications
based on student cognitive modeling.
Refine and update the eco-services promptly. The
current eco-services still requires refinement, such as
enhancing the comprehensiveness and richness of the
awesome-student-cognitive-modeling repository. As the
trends of the future continue to change, we will update
the latest content into the eco-services to ensure that it
remains up-to-date and continually improve the usage
of EduStudio.

9 Conclusions

In this paper, we released a unified library EduStudio for
student cognitive modeling. Compared to existing libraries,
we unified cognitive diagnosis and knowledge tracing, which
not only enable the reusability within individual category but
also facilitate sufficient reusability between them. In addition,
our EduStudio is modularized and templatized design when
implementing models, which sufficiently improves reusability
and flexibility. To further enable more researchers to
understand and quickly participate in the field of student
cognitive modeling, we also offered a range of user-friendly
eco-services surrounding EduStudio.
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