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Recently, the user-side fairness issue in Collaborative Filtering (CF) algorithms has gained considerable

attention, arguing that results should not discriminate an individual or a sub user group based on users’

sensitive attributes (e.g., gender). Researchers have proposed fairness-aware CF models by decreasing statistical

associations between predictions and sensitive attributes. A more natural idea is to achieve model fairness from

a causal perspective. The remaining challenge is that we have no access to interventions, i.e., the counterfactual

world that produces recommendations when each user have changed the sensitive attribute value. To this

end, we first borrow the Rubin-Neyman potential outcome framework to define average causal effects of

sensitive attributes. Then, we show that removing causal effects of sensitive attributes is equal to average

counterfactual fairness in CF. Then, we use the propensity re-weighting paradigm to estimate the average

causal effects of sensitive attributes and formulate the estimated causal effects as an additional regularization

term. To the best of our knowledge, we are one of the first few attempts to achieve counterfactual fairness

from the causal effect estimation perspective in CF, which frees us from building sophisticated causal graph.

Finally, experiments on three real-world datasets show the superiority of our proposed model.
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1 INTRODUCTION
Recommender systems are gaining critical impacts on humans and society, shaping the movies we

watch, the news we read, the job we seek, etc [31, 58, 59]. As one of the representative approaches

for recommender systems, Collaborative Filtering (CF) has been widely deployed in many scenarios

due to relatively high performance and easy-to-collect user behavior data [70].

The fairness issues in CF algorithms are widespread and urgently need to be addressed[27, 69, 75].

For example, the OECD’s Programme for International Student Assessment (PISA) collects student

behaviors from the real world, however, the collected data display obvious gender discrimination in

student behaviors [37]. Note that, CF algorithms have been widely used to obtain students’ ability

representations from their interaction behaviors with exercises [36, 60, 74]. In this way, CF models

trained on such data would be unfair [9, 10, 72], leading to further education inequalities in the

real world, e.g., exercise recommendation, class assignment, and even admission.

Among all fairness definitions, group fairness has been widely used to measure the treatment

differences between the under-represented group and the over-represented group. Generally, group

fairness requires that CF algorithms should not discriminate or favor an individual or a sub group

based on users’ sensitive attributes (e.g., gender and race) [47]. To achieve this goal, researchers have

designed various group fairness principles from a statistical perspective, such as demographic parity

and equality of opportunity [21, 30], and have proposed user fairness-oriented CF models [5, 75].

For example, fairness-aware regularization terms are proposed to decouple complicated correlations

between sensitive attributes and recommendation results [75]. Adversarial training has been widely

adopted for user fairness issues as it can ensure that sensitive attributes are orthogonal to user

embeddings [5, 69, 79]. Nowadays, researchers have proposed FairGNN, which simultaneously

employs a graph based sensitive attribute estimator and an adversarial learning based module to

improve fairness performance of graph based models [13]. In summary, data-driven models achieve

fairness by decreasing statistical correlations between sensitive attributes and predicted results.

However, some researchers argue that statistical fairness metrics have the potential to actually

increase discrimination [12, 29, 71]. As Randomized Controlled Trial (RCT) is considered as the

gold standard in scientific experiments, a more natural idea is to measure the effects of sensitive

attributes in predictions and model fairness from a causal perspective. By using a causal vocabulary,

researchers have designed counterfactual fairness as follows: an algorithm (e.g., a CF algorithm) is

counterfactually fair if the prediction results (e.g., CF outputs) are the same between the factual

world and an imagined counterfactual world where users’ sensitive attributes had changed [29]. The

challenge lies in that we only have access to observational data in the factual world where each user

only belongs to one sensitive attribute category. To address the challenge, researchers leveraged

the causal framework of Pearl [46] to model relationships between user sensitive attributes and the

prediction results, and utilized a latent exogenous variable to represent user characteristics unrelated

to sensitive attributes. Given a pre-defined causal graph stating the causal relationships among

variables, researchers have successfully achieved causal fairness [12, 17, 33, 35, 62]. For example,

Chiappa et al. proposed a path-specific counterfactual fairness to distinguish the effects of different

paths in a causal graph and eliminate causal effects along specific unfair paths for fairness [12].

These existing causal approaches all assume that the causal graph is available. However, we argue

that Pearl’s causal framework cannot be applied to user-side fairness issues in CF models. Note that,

high-dimension interaction data is the only and necessary input for CF models. It is a challenging

task even for a domain expert to find a proper latent exogenous high-dimension variable to represent

interactive information independent of sensitive attributes. This problem becomes more severe as

most users do not expose their sensitive attributes in recommender systems, as explicit sensitive

attribute values are necessary for the modeling of latent exogenous variables [29].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Average User-side Counterfactual Fairness for Collaborative Filtering 111:3

To this end, instead of leveraging Pearl’s causal graphs, we start from Rubin-Neyman potential

outcome framework to estimate causal effects of sensitive attributes based on users’ behavior

data [25, 53, 56]. After that, we prove that average counterfactual user fairness can be achieved

by minimizing the causal effects of user sensitive attributes on predicted results. Thus, our target

turns to minimize the estimated causal effects. As most users are unwilling to expose their sensitive

attributes, we further propose how to exploit the user-item interaction bipartite graph structure, and

design a graph self-supervised learning model to better estimate propensities and predict missing

user sensitive attributeswith limited sensitive information. Then, we usewell-estimated propensities

as weights for data samples to estimate the causal effects of sensitive attributes on predicted results.

After that, we formulate the estimated causal effects as an additional regularization term in the

predicted optimization process. In this way, we can optimize the CF model and simultaneously

achieve average counterfactual user fairness. To the best of our knowledge, we are one of the

first few attempts to achieve counterfactual fairness from the causal effect estimation perspective,

which frees us from the usual causal fairness approaches that rely on building sophisticated causal

graphs. Finally, we conduct extensive experiments on two real-world datasets to demonstrate the

effectiveness of our proposed a CounterFactually Fair collaborative filtering model (CFFair).
In summary, the key contributions of this paper are listed as follows:

• To the best of our knowledge, we are one of the first few attempts to achieve average user-side

counterfactual fairness from the causal effect estimation perspective for CF models.

• We develop a novel graph self-supervised propensity estimator for reweighing data samples,

which is in favor of estimating average causal effects with limited sensitive information.

• We conduct extensive experiments on three real-world datasets. Experimental results clearly

show the effectiveness of our proposed CFFair on achieving fairness.

2 RELATEDWORKS
2.1 CF based Recommender Systems
Recommender systems have been widely used to help users find potential items of interest [44].

Among recommender systems, CF models have been widely adopted in recommender systems

due to their relatively high performance and easy-to-collect high-dimension interactive data. The

interactive data denotes user behaviors on different items, e.g., clicks and purchase (implicit feed-

back) [50], and ratings (explicit feedback) [44]. Learning high-quality embeddings from interactive

data is the key to successful CF models [23, 32, 73]. The predicted behavior can be represented as

the inner dot [50] or a neural network’s output [64] of corresponding user embedding and item

embedding. Typically, there are two types of embedding learning based methods. The classical latent

factor based models utilize matrix factorization methods to learn free user and item embeddings.

Most users implicitly express their item preferences, e.g., click or purchase. Bayesian Personalized

Ranking (BPR) focuses on the ranking issues of unobserved items in implicit feedback [50]. Behavior

data in recommender systems naturally form a user-item bipartite graph. Therefore, graph-based

models for CF have been popular in the CF research community [23, 32]. This process relies on

iteratively updating user (item) embedding from their neighborhood’s item (user) embeddings [26].

Empirically, these graph-based models perform better than classical latent factor based models

because of utilizing the high-order collaborative signals in the user-item bipartite graph [7, 16,

39, 64]. Researchers notice that classic GCN based models could not model deeper layers due to

the over smoothing effects, which causes decrease of recommendation performance. LR-GCCF

has been proposed to enhance recommendation performance by removing non-linearities and

proposing a residual network structure [32]. These two operations can successfully alleviate the over

smoothing problem in graph convolution aggregation operation with sparse user-item interaction
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data. In addition, self-supervised learning has been proven effective in produce high-quality graph

representations of good generalizability, transferability, and robustness even without designing

sophisticated GNN architectures [68, 77].

2.2 Statistical Approaches for User-side Fairness in CF
As artificial intelligence applications have been applied in modern society, researchers show great

interest in whether applications are in compliance with legal and ethical requirements [42, 76].

Data-driven machine learning models inherit biases in the training data and discriminate users with

specific sensitive attributes, e.g., gender and races [19]. Therefore, it is critical to ensure fairness

in modern machine learning. In CF, researchers have defined various fairness principles from the

statistical perspective to eliminate the association between sensitive attributes and recommendation

results [21]. For example, the individual fairness principle calls for that similar individuals except for

different sensitive attribute values should receive similar treatments [2]. Group fairness principles

require that protected groups and advantaged groups should be treated similarly [21].

Researchers in the community of CF focus on designing fairness-aware CF models [65, 67]. The

significance of fairness in real-world scenarios have been discussed in detail [18, 49]. To apply

fairness principles to CF algorithms, researchers formulate fairness principles as different regulariza-

tion terms [4, 66]. Yao et al. design four new fairness-aware metrics (e.g., value unfairness, absolute

unfairness) to measure inconsistency in different user sensitive attributes for CF based recommenda-

tion, and term these metrics as regularization in the optimization objection for fairness [75]. Apart

from the regularization, fair representation learning has also gained growing attention, in which

adversarial training is a widely applied technique [41, 78]. It transforms the original embedding

space into a new embedding space and uses discriminators to encourage the new space containing

no sensitive information [41, 69]. To remove correlations among different sensitive attributes, a

composition of filters and discriminators on multiple sensitive attributes have been applied for

CF [5]. Furthermore, considering that user sensitive attributes are not always available in the real

world, e.g., only 14% teen users show their complete profiles on Facebook [40], FairGNN is proposed

to capture the graph structure information in depth for simultaneously predicting missing sensitive

values, and achieving group fairness on predicted attributes [13]. Researchers have found that

very abstract problem operationalizations are prevalent in fairness-aware studies, and discussed

the necessity and requirements of a fair recommendation [15]. Further, researchers have started

from real applied metrics to obtain a unified fairness-aware model rather than focusing on metrics

with abstract fairness definitions [1]. Though great progress has been made, these methods only

optimize specific fairness metric objections to achieve fairness, in which the statistical correlation

between specific sensitive attributes and predicted results is removed. However, the causal relations

between sensitive attributes and predicted results are largely ignored, which may reveal the real

discrimination in CF and should be paid more attention.

2.3 Causal-based User Fairness
Recently, researchers have noticed that causal relations between input and output can better

interpret discrimination in prediction tasks. Based on Pearl’s causal graphs, causal-based fairness-

aware models have been proposed [11, 12, 14, 24, 29, 52, 71], in which counterfactual fairness plays

an important role. It enforces distribution over possible predictions should remain unchanged in

the counterfactual world where sensitive attributes had been different [29]. Researchers leverage

the causal framework of Pearl [46], and utilize a latent proxy exogenous variable to represent user

characteristics unrelated to sensitive attributes. Given a pre-defined causal graph stating the causal

relationships among variables, researchers have successfully achieved causal fairness [12, 17, 33, 35,

62]. For example, Matt et.al first propose to revisit fairness issues from a causal perspective [29], and
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Chiappa et al. propose path-specific counterfactual fairness to distinguish the effects of different

causal paths in a causal graph, and eliminated causal effects along specific unfair causal paths [12].

Li et al. leverage adversarial learning to control the dependency between user sensitive attributes

and user embeddings based on a pre-defined causal graph [33].

Despite the remarkable success, how to achieve counterfactual fairness in CF remains unsolved.

As the high-dimension interactions are highly correlated with user sensitive attribute, it is hard

to estimate counterfactual user interactions by finding a proxy exogenous variable to represent

interactive information unrelated to the sensitive information. In this paper, we adopt the classical

Rubin-Neyman Causal Framework, which has been well-studied in healthcare, economics, and so

on [53, 56]. The core of the Rubin-Neyman Causal Framework is to estimate the average causal

effect of a treatment variable (the sensitive attribute) on a result variable by simulating a randomized

controlled trial. Along this line, we can achieve the average counterfactual fairness by minimizing

the estimated average causal effects. Different estimation methods have been proposed to estimate

or remove the causal effects of a treatment variable, such as matching method [56], doubly robust

method [20], and Inverse Propensity Weighting (IPW) based method [55, 63]. Among all these

models, IPW is one of the most suitable methods in recommender systems [55, 63]. With IPW, a

separate model is built to predict propensities of whether an item had been exposed to a user with

only limited exposure data for simulating a random exposure situation [34].

3 PRELIMINARY
In this section, we introduce notations for CF based recommender systems, followed by some

essential notations for Rubin-Neyman potential outcome framework.

3.1 Notations for CF based Recommender Systems
Recommender systems usually involve with a user set 𝑈 (|𝑈 | =𝑀) and an item set 𝑉 (|𝑉 | = 𝑁 ).

We consider the implicit feedback of users, which is more common in recommender systems.

In implicit feedback, users only implicitly express their preferences, e.g. click or purchase. User-

item interaction behaviors can be denoted as R = {𝑟 (𝑢, 𝑣)}𝑀×𝑁 . If user 𝑢 has interacted with

item 𝑣 , 𝑟 (𝑢, 𝑣) = 1, otherwise, 𝑟 (𝑢, 𝑣) = 0. Embedding based approaches have been the default

choices of most recommender systems [23, 50]. Specifically, embeddings can be represented as

a learnable matrix, E = [E𝑈 , E𝑉 ] = [e1, ..., e𝑢, ..., e𝑀 , ..., e𝑣, ..., e𝑀+𝑁 ] ∈ R(𝑀+𝑁 )×𝑑
. 𝑑 denotes the

dimension of embeddings. e𝑢 and e𝑣 denote corresponding embeddings of user 𝑢 and item 𝑣 ,

respectively. The predicted preference 𝑟 (𝑢, 𝑣) is calculated as the inner dot of corresponding

embeddings: 𝑟 (𝑢, 𝑣) = e𝑇𝑢 e𝑣 . To optimize the trainable parameters E, Bayesian Personalized Ranking

(BPR) is a commonly used pair-wise based optimization function [50]:

min

E
L𝑟𝑒𝑐 =

𝑀∑︁
𝑢=1

∑︁
(𝑖, 𝑗 ) ∈D𝑢

− ln𝜎 (𝑟 (𝑢, 𝑖) − 𝑟 (𝑢, 𝑗)) + 𝜆 | |E| |2, (1)

where 𝜎 (·) is the sigmoid function. The training dataset is represented as D𝑢 = {(𝑖, 𝑗) |𝑖 ∈ R𝑢
∧
𝑗 ∈

𝑉 − R𝑢}. R𝑢 = {𝑖 |𝑟 (𝑢, 𝑖) = 1} andV − 𝑅𝑢 = {𝑖 |𝑟 (𝑢, 𝑖) = 1} denote user 𝑢’s interacted items in the

training data, and user 𝑢’s non-interacted items, respectively.

Following previous works on recommendation fairness [57, 75], we focus on a single sensitive

attribute with binary values (e.g., gender). We leverage S = [𝑠1, ..., 𝑠𝑢, ..., 𝑠𝑀 ] (𝑠𝑖 ∈ {0, 1}) to denote

the binary user sensitive attribute. In this way,𝑈 can be divided into three subsets: subset𝑈1 ( |𝑈1 | =
𝑀1) whose sensitive attribute value is 1, subset𝑈0 ( |𝑈0 | = 𝑀0) whose sensitive attribute value is 0,
and subset𝑈𝑤𝑜𝑠 ( |𝑈𝑤𝑜𝑠 | = 𝑀 − (𝑀1 +𝑀0)) whose sensitive attribute is missing.
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3.2 Potential Outcome Framework
Causal effect estimation is the core component in causal inference, which has been studied for

decades in many research areas, e.g., political science, economics, and health care [53]. It analyzes

the causal effects from historical data, and provides valuable suggestions on whether to take

an intervention. We start from the classical Rubin-Neyman Potential Outcome Framework. This

framework has been widely used in the statistical analysis of cause and effect. Suppose there

are three variables: input variable 𝑋 , outcome variable 𝑌 , and treatment variable 𝑇 . Based on

different treatments (𝑇 = 0,𝑇 = 1), the potential outcome for individual 𝑙 has two potential values

(𝑌𝑇=0 (𝑥𝑙 ), 𝑌𝑇=1 (𝑥𝑙 )), abbreviated as (𝑌0 (𝑥𝑙 ), 𝑌1 (𝑥𝑙 )). The connections between observed values and

potential values can be formulated as:

𝑦𝑙 = 𝑡𝑙𝑌1 (𝑥𝑙 ) + (1 − 𝑡𝑙 )𝑌0 (𝑥𝑙 ), (2)

where 𝑡𝑙 is the treatment for the individual 𝑙 . The individual-level causal effect of the treatment

variable is the difference between the potential outcome if the individual receives the treatment

(𝑌1 (𝑥𝑙 )) and the potential outcome if she does not (𝑌0 (𝑥𝑙 )). Individual Treatment Effect (ITE) can be

represented as:

∀𝑙 ∈ 𝐿, 𝐼𝑇𝐸 = 𝑌1 (𝑥𝑙 ) − 𝑌0 (𝑥𝑙 ). (3)

Obviously, it is impossible to simultaneously see both potential outcomes. One of the potential

outcomes is always missing for each individual. This problem is known as the "fundamental

problem of causal inference" [53]. Consequently, individual-level treatment effects can not be

directly observed or obtained. A line of causal effect estimation is randomized experiments. Note

that, randomized experiments allow for population-level causal effect estimation. Randomization

requires assigning treatment values randomly to each individual. Then, an estimate of the Average

Treatment Effect (ATE) can be achieved by computing the differences between the treatment

samples (𝑇 = 1) and the control samples (𝑇 = 0). ATE can be formulated as:

𝐴𝑇𝐸 = E𝑙∼𝐿 [𝑌1 (𝑥𝑙 ) − 𝑌0 (𝑥𝑙 )], (4)

Due to ethical or practical concerns, randomly assigning treatment (e.g., taking or not taking pills)

is unreasonable in the real world. Therefore, randomized experiments are hard to realize. In this

case, we can only collect non-randomly treatment-assigned data (also known as observed data) for

causal inference. Researchers have developed many methods to estimate ATE with these observed

data. E.g., Grouped Conditional Outcome Modeling (GCOM) [28], matching based methods [56],

and propensity based methods [51]. All these methods attempt to simulate random assignment

by finding control individuals similar to treatment individuals. Although these methods achieve

good performance in modeling variables’ relationships, it is still a challenging task to adapt them

for recommendation fairness. We will introduce the details of transferring potential outcome

framework for recommendation fairness in the next section.

3.3 Counterfactual Fairness Definition for Collaborative Filtering
In this section, we present the counterfactual fairness definition in CF models, followed by analyzing

why traditional CF models can not meet the presented counterfactual fairness definition.

In a CF model, the observed user-item interaction R = {𝑟 (𝑢, 𝑣)}𝑀×𝑁 can be treated as the input
variable 𝑋 , predicted preference 𝑟 (𝑢, 𝑣) is the output variable 𝑌 , sensitive attributes S are regarded
as the treatment 𝑇 . Along this line, we can obtain potential predicted preferences (𝑟1 (𝑢, 𝑣), 𝑟0 (𝑢, 𝑣)),
similar as potential outcomes. Then, we re-build connections between potential outcomes and
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counterfactual notions:

𝑟 (𝑢, 𝑣) = 𝑠𝑢 · 𝑟1 (𝑢, 𝑣) + (1 − 𝑠𝑢) · 𝑟0 (𝑢, 𝑣),
𝑟𝐶𝐹 (𝑢, 𝑣) = 𝑠𝑢 · 𝑟0 (𝑢, 𝑣) + (1 − 𝑠𝑢) · 𝑟1 (𝑢, 𝑣),

(5)

where 𝑟𝐶𝐹 (𝑢, 𝑣) represents the predicted preferences from counterfactual world. Based on these

notions, we propose the counterfactual fairness definition as follows:

Definition 1 (Counterfactual Fairness in Collaborative Filtering). A CF model is coun-
terfactually fair from the user side if it meets

∀𝑢 ∈ 𝑈 ,∀𝑣 ∈ 𝑉 , 𝑟 (𝑢, 𝑣) = 𝑟𝐶𝐹 (𝑢, 𝑣). (6)

In this paper, we borrow the success of Rubin’s potential outcome framework on estimating

causal effects for fairness issues. Specifically, we replace the counterfactual notion 𝑟𝐶𝐹 (𝑢, 𝑣) and
the real world notion 𝑟 (𝑢, 𝑣) in Definition 1 with Eq.5.

𝑟 (𝑢, 𝑣) − 𝑟𝐶𝐹 (𝑢, 𝑣) = (2𝑠𝑢 − 1) · (𝑟1 (𝑢, 𝑣) − 𝑟0 (𝑢, 𝑣)) = 0. (7)

Then, the counterfactual fairness requirement can be simplified as follows:

∀𝑢 ∈ 𝑈 ,∀𝑣 ∈ 𝑉 , 𝑟1 (𝑢, 𝑣) − 𝑟0 (𝑢, 𝑣) → 0. (8)

Ordinarily, sensitive attributes (e.g., gender or race) can not be changed for any individual. As a

result, one of the potential preferences (𝑟1 (𝑢, 𝑣), 𝑟0 (𝑢, 𝑣)) is always missing, and we can not directly

obtain individual-level counterfactual fairness in Eq.6. As a substitute, we utilize randomized

experiments for population-level causal effect estimation. The corresponding fairness definition

can be formulated as:

Definition 2 (Average Counterfactual Fairness in Collaborative Filtering). A CF model
satisfies the average counterfactual user fairness requirement if

E𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟1 (𝑢, 𝑣) − 𝑟0 (𝑢, 𝑣)]
=E𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟1 (𝑢, 𝑣)] − E𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟0 (𝑢, 𝑣)] → 0.

(9)

In this paper, we choose to average counterfactual fairness in Eq.(9) as our goal. The detailed

reasons are organized as follows: first, in our case, counterfactuals cannot be directly observed,

i.e., a user cannot be both male and female at the same time. That is to say, we can not achieve

Eq.(6) based on observations. Second, conducting a randomized controlled experiment is a classic

approach in causal effect estimation, however, this approach still fails as we cannot conduct a

randomized controlled experiment directly as we cannot randomly assign or intervene in user

gender. At this point, we realize that we cannot observe or estimate Eq.(6). Third, with the help

of the potential outcome framework, we find that we can estimate the overall gender effects on

predicted ratings in the presence of missing values. In summary, although Eq.(6) appears to be a

better goal, we can only estimate gender effects at the population level in Eq.(9). Minimizing Eq.(9)

indicates that there is no gender effects on predicted ratings at the population level, which is also

important for fairness-aware CF models.

However, traditional CF models can not meet the counterfactual fairness definition in Eq.9. In

order to explain it, we present the process of training traditional CF models in Figure 1 a). 𝑆 denotes

the sensitive attribute. E denotes learnable embeddings from any CF model, and R̂ denotes predicted

preferences. The relationships between these variables are analyzed as follows:

• 𝑆 ↔ E: user and item embeddings are learned from historical interactions by any CF model.

Although embedding learning is not directly correlated with sensitive attributes, researchers

find that users’ sensitive attributes are predicted from their historical interactions [69].

Therefore, E has indirect connections with 𝑆 by historical interactions.
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Fig. 1. Analyses of unfairness in traditional CF models. The left part illustrates the training process of
traditional CF models, which accounts for why sensitive information are correlated with recommendation
results. The right part is sensitive attribute prediction performance on two datasets. We first train two classic
CF models (BPR, GCN), and then extract learned user embeddings from well-trained models. We observe
that learned embeddings are helpful for sensitive attribute prediction.

• E → R̂: predicted results are transformed from corresponding user embedding and item

embedding, e.g., inner dot [50] or a neural network [64].

• 𝑆 ↔ R̂: according to 𝑆 ↔ E and E → R̂, there are suspicious correlations between sensitive

attributes and predicted results.

Due to existence of 𝑆 ↔ R̂, we argue that the predicted results would be changed if the sensitive

attribute was changed. It leads to differences in data distribution between 𝑟1 (𝑢, 𝑣) and 𝑟0 (𝑢, 𝑣),
which contradicts the average counterfactual fairness definition in Eq.9.

To further verify the above analyses, we show an example of whether sensitive attributes

are correlated with learned embeddings (𝑆 ↔ E). We utilize a MLP based classifier to learn

the mapping function from learned embeddings to the sensitive attribute. Specifically, we first

split users into training/testing with the ratio of 8:2. Then, we train the classifier from the 80%

users’, and test classification performance on the remaining 20% users. Better performance denotes

tighter correlations between embeddings and the sensitive attribute. Note that, the experiments

are conducted on two widely-used recommendation datasets, and learned embeddings are from

two classic CF models, i.e., BPR [50] and GCN [32]. As shown in Figure 1 b), the mapping function

from E to 𝑆 can be easily learned, which can be evidence of the existence of the vague correlations

between 𝑆 and E.

4 THE PROPOSED MODEL
In this section, we present the details of our proposed CFFair. As illustrated in Figure 2, inspired

by the Rubin-Neyman potential outcome framework, we first transfer “counterfactual fairness for

recommendation” to the “sensitive attribute’s causal effect estimation” process. In the following,

we introduce how to formulate the fairness goal as an additional regularization term to basic CF

models with propensity scores (Section 5.1). Note that, the key of the additional regularization term

lies in high-quality propensity scores. To ensure the high quality of propensity scores, we design

a novel propensity estimator, which utilizes self-supervised learning to improve performance of

propensity estimations (Section 5.2). Finally, we provide a model discussion in detail to clarify some

default choices of our proposed CFFair (Section 5.3).

4.1 Average Counterfactual Fairness Formulation with Propensity Scores
In this part, we focus on how to formulate and achieve average counterfactual fairness in CF models.

First, we introduce how to use observational data for estimating potential preferences. Second, we
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Predicted preferences 
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Predicted preferences 
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𝑟̂𝑟 𝑢𝑢,𝑣𝑣 = 𝑟̂𝑟𝐶𝐶𝐶𝐶(𝑢𝑢,𝑣𝑣)
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for better estimating propensities.
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0

c) Reweighting data samples to estimate 
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on the estimated propensity scores. 
Formulating the estimated causal effect 
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𝑟̂𝑟0(𝑢𝑢, 𝑣𝑣)

Fig. 2. The overall process of our proposed CFFair. a) This part illustrates the counterfactual fairness re-
quirement in recommender systems. b) To accurately estimate propensities, we propose a novel graph based
propensity estimator. c) We use inverse propensities for data sample re-weighting. In this way, we estimate
the sensitive attribute’s causal effects and formulate the causal effects as an additional regularization term.
The size of inverse propensity is proportional to its value. The larger values of propensities correspond to the
smaller weights for the data samples.

introduce how to formulate average counterfactual fairness based on potential preferences. Third,

we introduce a regularization term to achieve the formulated counterfactual fairness goal.

4.1.1 Estimating potential preferences. As shown in Definition 2, the most critical part of aver-

age counterfactual fairness lies in estimating potential preferences, i.e., E𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟1 (𝑢, 𝑣)] and
E𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟0 (𝑢, 𝑣)]. Note that, there are many methods to estimate the causal effects, e.g., Grouped

Conditional Outcome Modeling (GCOM) [28], matching-based methods [56], propensity-based

methods [51], doubly robust based methods [20], and so on. We argue that propensity based meth-

ods are the most suitable method for the average counterfactual fairness in recommender systems.

The detailed discussion of comparison among these methods is recorded in Section 4.3.1. Here, we

directly leverage propensity scores, and focus on introducing how to achieve the estimation from

user inherent characteristics.

For simplicity and convenience of understanding, we start with the estimation of potential

preferences 𝑟1 (𝑢, 𝑣1) and 𝑟0 (𝑢, 𝑣1) with a single item 𝑣1. Here, we take the estimation of 𝑟1 (𝑢, 𝑣1) as
an example. 𝑟1 (𝑢, 𝑣1) can be divided into two parts. One part is 𝑟1 (𝑢, 𝑣1) for user group 𝑈1, which

can be directly estimated by any CF model. However, the other part is 𝑟1 (𝑢, 𝑣1) for user group
𝑈0, which are impossible to directly obtain. As a result, the estimation of 𝑟1 (𝑢, 𝑣1) consists of the
real-world part and the counterfactual-world part. To solve the problem, we take Bayes’ theorem

into consideration and design an alternative way. First, we sample from 𝑝 (𝑢, 𝑣1 |𝑠𝑢 = 1) to avoid

directly computing counterfactuals:

𝑝 (𝑢, 𝑣1) =
𝑝 (𝑢, 𝑣1 |𝑠𝑢 = 1)𝑝 (𝑠𝑢 = 1)

𝑝 (𝑠𝑢 = 1|𝑢, 𝑣1)
. (10)

In Eq.(10), we successfully build connections between observational 𝑝 (𝑢, 𝑣1 |𝑠𝑢 = 1) and potential

𝑝 (𝑢, 𝑣1) for estimating 𝑟1 (𝑢, 𝑣1). Therefore, we can turn the estimation of potential preferences
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𝑟1 (𝑢, 𝑣1) as a statistical estimation as follows:

E𝑢,𝑣1∼𝑝 (𝑢,𝑣1 ) [𝑟1 (𝑢, 𝑣1)]

=E𝑢,𝑣1∼𝑝 (𝑢,𝑣1 |𝑠𝑢=1) [
𝑝 (𝑠𝑢 = 1)

𝑝 (𝑠𝑢 = 1|𝑢, 𝑣1)
𝑟 (𝑢, 𝑣1)]

=
1

𝑀1

∑︁
𝑢∈𝑈1

[𝑀1/(𝑀1 +𝑀0)
𝑝 (𝑠𝑢 = 1|𝑢, 𝑣1)

𝑟 (𝑢, 𝑣1)]

=
1

(𝑀1 +𝑀0)
∑︁
𝑢∈𝑈1

[ 𝑟 (𝑢, 𝑣1)
𝑝 (𝑠𝑢 = 1|𝑢, 𝑣1)

],

(11)

where 𝑝 (𝑢, 𝑣1 |𝑠𝑢 = 1) corresponds to predicted preferences between group 𝑈1 and item 𝑣1. The

probability 𝑝 (𝑠𝑢 = 1) can be directly obtained from the proportion of users 𝑈1, denoted as 𝑝 (𝑠𝑢 =

1) = 𝑀1/(𝑀0 +𝑀1). As for the estimation of 𝑝 (𝑠𝑢 = 1|𝑢, 𝑣1), we leave the solution in Section 4.2.

Meanwhile, we can leverage the similar method to estimate E𝑢,𝑣1∼𝑝 (𝑢,𝑣1 ) [𝑟0 (𝑢, 𝑣1)]. The process
can be formulated as:

E𝑢,𝑣1∼𝑝 (𝑢,𝑣1 ) [𝑟0 (𝑢, 𝑣1)] =
1

(𝑀1 +𝑀0)
∑︁
𝑢∈𝑈0

[ 𝑟 (𝑢, 𝑣1)
𝑝 (𝑠𝑢 = 0|𝑢, 𝑣1)

] . (12)

4.1.2 Formulating average counterfactual fairness goal. Based on the estimation of potential pref-

erences 𝑟1 (𝑢, 𝑣1) and 𝑟0 (𝑢, 𝑣1), we can easily formulate the average counterfactual fairness with a

single item 𝑣1 as follows:

1

𝑀0 +𝑀1

[
∑︁
𝑢∈𝑈1

[ 𝑟 (𝑢, 𝑣1)
𝑝 (𝑠𝑢 = 1|𝑢, 𝑣1)

] −
∑︁
𝑢∈𝑈0

[ 𝑟 (𝑢, 𝑣1)
𝑝 (𝑠𝑢 = 0|𝑢, 𝑣1)

]] → 0. (13)

Eq.13 only focuses on counterfactual fairness issues for a single item. To ensure the overall fairness

of a CF model, we need to extend the requirement (Eq.13) from a single item to all items. However,

the requirement of all items means that we need to consider the whole predicted dense matrix when

training a CFmodel, which apparently leads to the increased complexity andmemory requirements
1
.

This prompts us to consider which items should be considered in the fairness regularization. We

find that a large number of ratings for unpopular long-tailed items do not significantly contribute

to the fairness goal. Therefore, we design the sampling methodology. The sampling process consists

of two steps. In the first step, we filter out products with click counts below a certain threshold

to exclude unpopular items. In the second step, we measure biases between males and females

within these popular items and select a few items with the highest biases as the sampled results.

In summary, we propose to sample important items that have noticeable differences between𝑈0

and 𝑈1 to satisfy average counterfactual fairness requirements, which can ensure the fairness

performance and convenience at the same time. The process can be formulated as:∑
𝑣∈𝑉 1𝛿𝑣>𝛿 ′ [

∑
𝑢∈𝑈1

[ 𝑟 (𝑢,𝑣)
𝑝 (𝑠𝑢=1 |𝑢,𝑣) ] −

∑
𝑢∈𝑈0

[ 𝑟 (𝑢,𝑣)
𝑝 (𝑠𝑢=0 |𝑢,𝑣) ]]

(𝑀0 +𝑀1)
∑
𝑣∈𝑉 1𝛿𝑣>𝛿 ′

→ 0, (14)

where 𝛿𝑣 denotes item 𝑣 ’s differences between 𝑈0 and 𝑈1. E.g., in recommender systems with

explicit rating values, 𝛿𝑣 can be calculated as the average rating differences between𝑈0 and𝑈1. For

implicit feedback, for each item 𝑣 , we calculate the difference between the percentage of𝑈0 that

rated item 𝑣 and the percentage of𝑈1 that rated item 𝑣 . 1𝛿𝑣>𝛿 ′ denotes an indicator function. If the

1
During the actual training process, we found that using all the data for fairness-aware regularization term calculation on

the Lastfm-360K dataset exceeded the memory capacity of our 3090 GPU with 24G memory.
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requirement is met (i.e., 𝛿𝑣 > 𝛿
′
), the indicator equals 1. Otherwise, 1𝛿𝑣>𝛿 ′ = 0. Please note that, we

also include the sampling methodology in the baseline DP-BPR and DP-GCN.

4.1.3 Overall loss function. To this end, our goal is two-fold: maintaining recommendation accuracy

(Eq.1), and meeting the average counterfactual fairness requirements (Eq.14). To achieve the two-

fold goal, we propose to augment the learning objective by adding an additional fairness-aware

regularization term, similar to [75]. The additional term is formulated as:

L𝑟𝑒𝑔 =
∑
𝑣∈𝑉 1𝛿𝑣>𝛿 ′ [

∑
𝑢∈𝑈1

[ 𝑟 (𝑢,𝑣)
𝑝 (𝑠𝑢=1 |𝑢,𝑣) ] −

∑
𝑢∈𝑈0

[ 𝑟 (𝑢,𝑣)
𝑝 (𝑠𝑢=0 |𝑢,𝑣) ]]

(𝑀0 +𝑀1)
∑
𝑣∈𝑉 1𝛿𝑣>𝛿 ′

. (15)

Correspondingly, the overall loss function for the two-fold goal is formulated as:

min

E
L𝑎𝑙𝑙 = L𝑟𝑒𝑐 + 𝜇L𝑟𝑒𝑔, (16)

where the first loss L𝑟𝑒𝑐 models recommendation accuracy, and the second term is the fairness-

aware regularization term. 𝜇 is a hyper-parameter to control the balance between accuracy and

average counterfactual fairness performance. The detailed algorithm can be found in Algorithm 1.

Algorithm 1 Detailed training procedures of CFFair.

Require: Users𝑈 , items𝑉 , interactions R, estimated propensity scores 𝑝 (𝑠𝑢 = 1|𝑢) and 𝑝 (𝑠𝑢 = 0|𝑢)
from the propensity estimator.

Ensure:
1: Initialize trainable parameters E.
2: repeat
3: Sample negative triplets (𝑢, 𝑖, 𝑗) from 𝑢 ∈ 𝑈 ∧

𝑖 ∈ R𝑢
∧
𝑗 ∈ 𝑉 − R𝑢 ,

4: Get a batch of training data, including triplets (𝑢, 𝑖, 𝑗)
5: for each (𝑢, 𝑖, 𝑗) in the batch do
6: Compute recommender system loss L𝑟𝑒𝑐 (Eq.1),
7: Compute the regularization term L𝑟𝑒𝑔 (Eq.14),
8: Compute the overall loss L𝑎𝑙𝑙 (Eq.16),

9: end for
10: Minimize L𝑎𝑙𝑙 (Eq.16) to optimize E.
11: until Convergence of the recommender system.

4.2 The Propensity Estimator
The remaining problem in Eq.15 is 𝑝 (𝑠𝑢 = 1|𝑢, 𝑣) estimation. As items are irrelevant with user

sensitive attributes, the estimation can be degraded to estimate 𝑝 (𝑠𝑢 = 1|𝑢). Note that, well-trained
user embeddings have been proven to include ample user inherent characteristics [5]. However, in

the process of training CFFair, the embeddings are encouraged not to contain sensitive information,

which is harmful for sensitive attribute prediction. Therefore, it is improper to estimate propensity

scores based on the embeddings trained from CFFair. As a substitute, we use pre-trained historical

user embeddings from other basic CF models, e.g., BPR [50] and GCN [23], which are considered

as containing ample sensitive information. Apart from historical user embeddings, the unique

user-item bipartite graph structure in recommender systems has been proven to include ample user

information [57, 69]. Intuitively, we further propose to utilize structure information to improve

propensity estimation performances.

To sum up, we treat the process of propensity estimation as a classification task. The input of

the classification task is the historical user embeddings. The predicted probability of (𝑠𝑢 = 1) can
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be seen as propensities 𝑝 (𝑠𝑢 = 𝑠 |𝑢). To this end, we develop a propensity estimator, consisting

of a graph self-supervised encoder for embedding learning and a sensitive attribute classifier for

propensity estimation. The overall structure of the estimator is shown in Figure 3.

𝑓𝑓(�) Maximize
Agreement

𝑑𝑑(�)𝑓𝑓(�)

Graph Encoder

Graph Encoder Attribute Classifier

�𝑢𝑢

�𝑢𝑢

Minimize
Differences

User Sensitive
Attribute

�𝐺𝐺

𝐺̅𝐺

𝐡̂𝐡𝑢𝑢𝐾𝐾

𝐡̅𝐡𝑢𝑢𝐾𝐾

𝐡𝐡𝑢𝑢𝐾𝐾

Corrupted 
view 1

Corrupted 
view 2

𝑢𝑢

𝐺𝐺

Predicted 
Propensity

Fig. 3. The structure of the propensity estimator.

4.2.1 Graph self-supervised encoder 𝑓 (·). The encoder transforms historical embeddings to graph

self-superivsed representations, which encourages encoding more sensitive information. The

encoder is shown in the yellow module in Figure 3.

In recommender systems, user-item behavior data naturally forms a user-item bipartite graph.

Empirically, graph-based methods can capture high-order collaborative signals, obtain more ef-

fective embeddings, and have better recommendation results [23, 32]. Hence, we intend to utilize

the bipartite graph structure for propensity estimation. Besides, self-supervised signals (i.e., user

attributes) have been proven effective in improving effectiveness of classification performance [77].

To this end, we focus on applying the utilization of the user-item bipartite graph and self-supervised

learning techniques into the propensity estimation process.

To utilize the graph structure information, we employ Graph Convolutional Network (GCN) [26]

to aggregate neighboring nodes’ features according to the user-item bipartite graph. Specifically,

the aggregation process at the (𝑘 + 1) iteration can be formulated as the following two steps:

h𝑘+1

𝑣 = 𝐺𝐶𝑁 (h𝑘𝑣 , {h𝑘𝑢 : 𝑢 ∈ R𝑣}),
h𝑘+1

𝑢 = 𝐺𝐶𝑁 (h𝑘𝑢, {h𝑘𝑣 : 𝑣 ∈ R𝑢}),
(17)

where R𝑢 denotes neighboring item nodes of user𝑢 (aka user𝑢’s interacted items). Correspondingly,

R𝑣 denotes neighboring user nodes of item 𝑣 . h0

𝑢, h0

𝑣 denotes historical user representations and

item representations, respectively. Please refer to Section 5.1 for details about h0

𝑢, h0

𝑣 .

Note that, supervised signals (i.e., labels of user attributes) are necessary for propensity estima-

tions. However, users are not willing to expose their sensitive information in the real world, which

poses a great challenge of lacking effective supervised signals. As self-supervised signals (i.e., user

attributes) have been proven effective in improving effectiveness of classification performance [77],

we propose to employ self-supervised learning techniques to alleviate the challenge.

In detail, we first generate two corrupted graphs (i.e., 𝐺1 and 𝐺2) by randomly dropping graph

nodes in the bipartite graph. Then, we leverage Eq.17 to process two corrupted graphs and obtain
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representations from the last layer of graphs, which are denoted as

ˆh𝐾𝑢 = 𝑓 (h0

𝑢) 𝑓 𝑜𝑟 𝐺1,

¯h𝐾𝑢 = 𝑓 (h0

𝑢) 𝑓 𝑜𝑟 𝐺2.
(18)

Next, the self-supervised signals are captured by maximizing the agreement between representa-

tions of the same user𝑢 in different corrupted graphs (i.e.,𝐺1 and𝐺2) for better embedding learning.

The intuition behind this operation is that robust representations should hold unchanged under

different kinds of graph disturbances. The process of maximizing agreement can be formulated as:

max

Θ𝑓
L𝑠𝑠𝑙 =

𝑀∑︁
𝑢=1

ln

𝑐 ( ˆh𝐾𝑢 , ¯h𝐾𝑢 )
𝑐 ( ˆh𝐾𝑢 , ¯h𝐾𝑢 ) + Ω𝑢

,

Ω𝑢 =

𝑀∑︁
𝑚=1

1[𝑚≠𝑢 ] (𝑐 ( ˆh𝐾𝑚, ¯h𝐾𝑢 ) + 𝑐 ( ˆh𝐾𝑢 , ¯h𝐾𝑚)),

𝑐 ( ˆh𝐾𝑢 , ¯h𝐾𝑢 ) = 𝑒𝜗 (
ˆh𝐾𝑢 ,¯h𝐾𝑢 ) ,

(19)

where 𝜗 denotes cosine similarity. 𝑒𝜗 (
ˆh𝐾𝑢 ,¯h𝐾𝑢 )

denotes the similarity between the same user 𝑢’s two

vectors
ˆh𝐾𝑢 and

¯h𝐾𝑢 based on two corrupted graphs 𝐺1 and 𝐺2. Note that, 1[𝑚≠𝑢 ] is an indicator

function. If [𝑚 ≠ 𝑢] is true, 1[𝑚≠𝑢 ] = 1, otherwise, 1[𝑚≠𝑢 ] = 0. Ω𝑢 denotes the similarity between

different users’ vectors based on two corrupted graphs. The optimization parameters Θ𝑓 denotes
the trainable parameters of encoder 𝑓 (·).

4.2.2 Sensitive attribute classifier. The classifier transforms graph self-superivsed representations

to propensity scores, which encourages better classification performance. The classifier is shown

in the green module in Figure 3.

As mentioned before, we treat the propensity estimation 𝑝 (𝑠𝑢 = 1|𝑢, 𝑣) as a sensitive attribute clas-
sification task. As a result, we leverage a classifier 𝑑 (·), such as a Multi-Layer Perceptron (MLP) [43],

to achieve this goal, which can be formulated as follows:

𝑝 (𝑠𝑢 = 1|𝑢) = 𝑑 (h𝐾𝑢 ). (20)

We leverage the Cross-Entropy function for optimization:

min

Θ𝑓 ,Θ𝑑
L𝑐𝑙𝑠 =

∑︁
𝑢∈𝑈1∪𝑈0

−[𝑠𝑢 ln𝑝 (𝑠𝑢 = 1|𝑢) + (1 − 𝑠𝑢) ln(1 − 𝑝 (𝑠𝑢 = 1|𝑢))] .
(21)

Then, the overall optimization target of our proposed propensity estimator is formulated as follows:

min

Θ𝑓 ,Θ𝑑
L𝑐𝑙𝑠 − 𝛽L𝑠𝑠𝑙 , (22)

where 𝛽 is a hyper-parameter that controls weight for self-supervised loss. After training the whole

propensity estimator, we can obtain all propensity scores from Eq.20. To overcome high variances

of estimated propensity scores, we introduce Clipped Propensity Score [54] as follows:

𝑝 (𝑠𝑢 = 𝑠 |𝑢) =𝑚𝑎𝑥{𝑝 (𝑠𝑢 = 𝑠 |𝑢), 𝜌}, 𝑠 ∈ {0, 1}, (23)

where 𝜌 is a hyper-parameter that controls scope of “Clipped”. This process has been reported in

Algorithm 2. By employing this estimator, we can obtain the propensity scores for the final fair

recommendation.
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Algorithm 2 User sensitive attribute propensity estimation.

Require: Users𝑈 , Item 𝑉 , users with sensitive attributes𝑈1 ∪𝑈0, sensitive attributes 𝑆 .

Ensure:
1: Initialize trainable parameters Θ𝑓 ,Θ𝑑 of propensity estimator.

2: repeat
3: Get a batch from users𝑈1 ∪𝑈0.

4: for each (𝑢, 𝑠𝑢) in the batch do
5: Get user 𝑢’s aggregated representations h𝑢 (Eq.17),

6: Compute self-supervised learning loss L𝑠𝑠𝑙 (Eq.19),
7: Compute semi-supervised classification loss L𝑐𝑙𝑠 (Eq.21),
8: end for
9: Compute and minimize Eq.22 to optimize Θ𝑓 ,Θ𝑑 ,
10: until Convergence of the estimator.

Output:
11: Predicted propensity scores 𝑝 (𝑠𝑢 = 𝑠 |𝑢, 𝑣).

4.3 Model Discussion
4.3.1 Comparisons among different fairness definitions. Counterfactual fairness [12, 29, 71] is

closer to individual fairness [2, 45, 48]. Specifically, both definitions aim to eliminate differences

between two individuals. Individual fairness requires that similar individuals with different sensitive

attributes receive similar outcomes. Counterfactual fairness, on the other hand, defines two different

worlds: the factual world and the counterfactual world. In the counterfactual world, each user’s

gender is changed. Unlike individual fairness, which focuses on reducing differences between

similar real users, counterfactual fairness aims to eliminate differences between each real individual

and their corresponding virtual individual in the counterfactual world.

Average counterfactual fairness is more aligned with a group fairness definition, demographic

parity [38]. In contrast to removing the influence of sensitive attributes on outcomes from a causal

perspective, demographic parity focuses on mitigating existing biases in observed data. We have to

acknowledge that our defined average counterfactual fairness goal in Eq.9 can be easily reduced to

demographic parity in two cases. One case is that historical user embeddings are totally irrelevant

to the sensitive attribute. In this case, the predicted propensity scores tend to be around the

classification threshold. We argue that the threshold for an imbalanced binary classification is closer

to the category with more instances [6]. In our task, the threshold of sensitive attribute classification

should be
𝑀1

𝑀1+𝑀0

for𝑈1, and
𝑀0

𝑀1+𝑀0

for𝑈0, respectively. To this end, average counterfactual fairness

will degenerate to E𝑢,𝑣1∼𝑝 (𝑢,𝑣1 |𝑠𝑢=1) [𝑟 (𝑢, 𝑣1)] − E𝑢,𝑣1∼𝑝 (𝑢,𝑣1 |𝑠𝑢=0) [𝑟 (𝑢, 𝑣1)] (demographic parity). In

addition, the poor performance of the classifier module can make predicted propensity scores tend

to be around the classification threshold, leading to the degeneration. Therefore, it is also necessary

to improve classification performance. For example, we choose to apply the graph self-supervised

estimator to obtain accurate sensitive attribute values.

4.3.2 Comparisons to other causal effect estimation methods. There are many other casual effect

estimation methods, e.g., Grouped Conditional Outcome Modeling (GCOM) [28], matching based

methods [56], doubly robust based methods [20], and so on.

We argue that propensity based methods are the most suitable method for the average coun-

terfactual fairness in recommender systems, and other causal effect estimation methods are not

currently suitable. Specifically, GCOM builds two different models for different sensitive attribute

values, e.g., two CF models respectively for male users and female users. Then, GCOM can estimate
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a male/female user’s counterfactual results by inputting the user information to female/male CF

models. The success of GCOM lies in using other associated information to build two models and

exchanging the input of these two models. However, this fails in recommender systems. Suppose

that two CF models are designed for only male users and female users. Then, when exchanging

input of two CF models, exchanged users are new users for each CF model. Note that, “new user”

problem (i.e., cold start problem) is a common challenge for CF models, and it is almost impossible

to give proper prediction without additional side information in CF models. Therefore, GCOM fails

in CF based recommender systems.

Matching-based methods are not very suitable in CF models. In counterfactual fairness in

recommender systems, matching-based methods should first divide users into male users and

female users. Then, they should match users in different user groups, i.e., matching a most similar

male/female user for a female/male user. When it comes to causal effect estimation, matching-

based methods would compare each user and the matched user. However, this process is difficult

in recommender systems, as it is very hard to match “similar users” with high-dimension user

characteristics (i.e., sparse user behaviors). Doubly robust based methods are not fit for fairness in

recommendation, as matching or GCOM are base models for doubly robust based methods.

Luckily, propensity scores based methods can successfully measure average counterfactual

fairness in recommender systems. Propensity scores based methods utilize high-dimension user

characteristics to first estimate a propensity score for each sample, and then reweight training

samples with inverse propensity scores for causal effect estimation. Note that, propensity scores

based methods avoid directly estimating counterfactuals and are suitable for high-dimension

unobserved latent interest. Due to the above analyses, we argue that propensity score based methods

are currently the most suitable for counterfactual fairness estimation in CF models. Therefore, we

leverage propensity scores to achieve the causal effect estimation.

5 EXPERIMENTS
In this section, we first introduce three real-world datasets that we evaluate models. Then, we

describe baseline models, evaluation metrics, and the implementation details of our proposed CFFair.
Next, we present empirical results and give a detailed analysis of models on recommendation

performance and fairness performance.

5.1 Experimental Settings

Table 1. Statistics of the three datasets.

Datasets Users Items Ratings Density

PISA-Australia 8,476 184 93,571 6.000%

MovieLens-1M 6,038 3,533 575,281 2.697%

Lastfm-360K 53,675 125,512 2,621,895 0.039%

Datasets.We select PISA-Australia2 dataset,MovieLens-1M [22] dataset and Lastfm-360K dataset [8],

whose statistics are reported in Table 1. In order to turn MovieLens-1M into an implicit feedback

dataset, we treat samples with rating of 4 and 5 as positive feedback and the rest as negative

feedback, similar as previous studies did [80]. We split the training/validation/testing sets with the

ratio of 70%, 10%, 20% on all datasets. Meanwhile, we treat gender as the sensitive attribute. The
male users are treated as the user group 𝑈1. In constrast, female users are regarded as 𝑈0. This

operation is similar as many previous works did on fairness [75]. To simulate the situation that user

2
https://www.oecd.org/pisa/data/
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may not expose their sensitive information in real world, we randomly drop 70% users’ sensitive

attributes and only keep 30% users’ sensitive attributes when training the propensity estimator.

The PISA-Australia dataset consists of students’ responses logs on different exercises, which

can be seen as students’ behaviors on exercises. We treat students as users, exercises as items,

and our goal is to predict students’ scores on exercises. In this way, we can recommend their

non-mastered exercises to students. To transform the PISA-Australia dataset into implicit feedback,

we retain students’ correct response logs as positive interactions, and remove users with less than

12 behaviors. We have discovered an obvious disparity in the proportion of correctly answers for

most exercises between males and females. Among 184 exercises (items), over 20% of the exercises

(37/184) exhibit a proportion difference of more than 5%, while over 7% of the exercises (13/184)

show a proportion difference of more than 10%. Also, the student embeddings mined from these

response logs can be seen as student abilities, potentially affecting subsequent decisions, such as

class assignment and admission. This reminds us that we should pursue fairness on this dataset.

Baselines.We compare our proposed CFFair with the following baselines:

• BPR [50]: it is a classic latent factor-based CF model with pair-wise optimization.

• GCN [32]: it is a state-of-the-art graph-based CFmodel. It enhances recommendation accuracy

by removing non-linearities and proposing a residual structure.

• DP-BPR, DP-GCN [75]: it proposes a practical statistical fairness regularization term in

explicit feedback. We modify the regularization term to implicit feedback. Then, we add the

modified regularization term to BPR and GCN, respectively.

• FairGo [69]: it adopts adversarial training for group fairness in CF based recommender

systems. Specifically, it removes unfairness from the perspectives of both local representations

and sub user graph representations. As it requires full access to sensitive attributes, we adopt

the simplest method, i.e., filling missing values with the majority value of the sensitive

attribute in our setting.

• FairGNN [13]: it is designed for group fairness on a graph structure with limited sensitive

information. Adversarial training is adopted to remove unfairness, and a graph-based sensitive

attribute classifier is utilized to handle missing sensitive information.

Evaluation metrics. For recommendation performance, we use two commonly used metrics,

Hit Ratio (HR) and Normalized Discounted Cummulative Gain (NDCG) [23]. HR measures the

percentage of hit items, and NDCG puts more emphasis on the top-ranked items. For counterfactual

fairness performance, an intuitive method is to use the average counterfactual regularization term

in Eq.14 as a metric 𝐴𝑇𝐸𝑃 . Please note that, the propensity scores used in the metric 𝐴𝑇𝐸𝑃 are

independent of all training models. 𝐴𝑇𝐸𝑃 is formulated as:

𝐴𝑇𝐸𝑃 = |E𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟1 (𝑢, 𝑣) − 𝑟0 (𝑢, 𝑣)] |. (24)

The smaller𝐴𝑇𝐸𝑃 denotes the better average counterfactual fairness. As there is no golden standard

to evaluate counterfactual fairness with observational data, our intuition is to employ more causal

effect estimation methods for counterfactual fairness evaluation. Specifically, we further adopt

another commonly-used matching-based method [56]. The basic idea is to match similar users but

with different sensitive attributes, and then use the matched users to estimate the causal effects.

For those users who match other users, we use (𝑢,𝑢𝑚) pairs to denote the matching user pair. 𝑢𝑚
denotes the matching user for user 𝑢, which can be seen as the counterfactual estimation of 𝑢. The

process of matching users is as follows. First, we calculate similarities among users. Second, for

each user 𝑢, we find the most similar user 𝑢𝑚 with the other sensitive attribute value. Note that, we

choose K:1 matching considering feasibility. If there are many similar users, with the majority being

males and only a small portion being females. During the matching process, if we strictly allow 1:1
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Table 2. Average counterfactual user fairness performance on MovieLens-1M with varying K.

Model 𝐴𝑇𝐸𝑃 ↓ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ↓ M@K↑
K=20 K=30 K=40

BPR 1.0255 ± 0.0530 0.2120 ± 0.0236 0.0855 ± 0.0026 0.1073 ± 0.0032 0.1238 ± 0.0201

DP-BPR 0.6278 ± 0.0378 0.1428 ± 0.0225 0.1364 ± 0.0112 0.1633 ± 0.0088 0.1855 ± 0.0070

CFFair-BPR 0.4753 ± 0.0453 0.1193 ± 0.0102 0.1398 ± 0.0029 0.1646 ± 0.0036 0.1855 ± 0.0127
GCN 1.4403 ± 0.0560 0.3513 ± 0.0313 0.0873 ± 0.0015 0.1058 ± 0.0025 0.1198 ± 0.0036

FairGo 1.3682 ± 0.0317 0.8920 ± 0.0212 0.1053 ± 0.0164 0.1243 ± 0.0187 0.1404 ± 0.0086

FairGNN 1.0827 ± 0.0220 0.8620 ± 0.0117 0.1281 ± 0.0234 0.1525 ± 0.0293 0.1677 ± 0.0079

DP-GCN 1.1513 ± 0.0683 0.1640 ± 0.0230 0.1287 ± 0.0174 0.1478 ± 0.0170 0.1643 ± 0.0192

CFFair-GCN 0.7552 ± 0.0271 0.1542 ± 0.0095 0.1402 ± 0.0080 0.1554 ± 0.0061 0.1687 ± 0.0053

matching between males and females, we would find that most males do not have suitable matches,

which is unacceptable. Third, to avoid poor matches in K:1 matching, we set a similarity threshold 𝜏

to filter out certain unreliable matches. In our experiments, we set 𝜏 = 0.6. After obtaining matched

user pairs (𝑢,𝑢𝑚), we propose𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 to measure differences between matched pairs:

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 = E𝑢𝑚
𝑢,𝑣∼𝑝 (𝑢,𝑣) [𝑟 (𝑢, 𝑣) − 𝑟 (𝑢𝑚, 𝑣)], (25)

where the smaller 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 value denotes better average counterfactual fairness performance.

Furthermore, we extend thematching-basedmethod to ranking. Specifically, we propose a matching-

based ranking metric by comparing the recommended lists of matched users (𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔@𝐾,𝑀@𝐾 ):

𝑀@𝐾 =
∑︁
𝑢,𝑢𝑚

|L(𝑢)@𝐾 ∩ L(𝑢𝑚)@𝐾 |
𝐾

, (26)

where 𝐿𝑢@𝐾 denotes items in the Top-K list for user 𝑢. Obviously,𝑀@𝐾 measures the similarity

of recommended lists between matched users. The larger𝑀@𝐾 denotes more similarity between

matched users, leading to a better average counterfactual user fairness.

Parameter settings. We conduct all experiments with Pytorch-1.6.0 on 1 NVIDIA TITAN RTX

Graphics card. We utilize Adam optimizer and the initial learning rate is 0.005. In each epoch,

we generate the training dataset D by randomly sampling one non-interacted item as negative

item 𝑗 for each user-item pair (𝑢, 𝑖). The training dataset is filled with triplets (𝑢, 𝑖, 𝑗) by random

selecting non-interacted items 𝑗 . In one batch, we random select 16,384 triplets in MovieLens-1M
and 32,768 triplets in Lastfm-360K to update user and item embeddings. The embedding size is set

to 64, i.e., 𝐷 = 64. As for recommendation model training, hyper-parameter 𝜇 in Eq.16 is selected

from {1 × 10
−5, 2 × 10

−5, 5 × 10
−5, 1 × 10

−4, 0.001, 0.01} for CFFair-BPR, and {2 × 10
−6, 5 × 10

−6, 1 ×
10

−5, 2× 10
−5, 5× 10

−5, 1× 10
−4} for CFFair-GCN. The balancing parameter 𝜆 in Eq.16 is set to 0.01.

Clipped hyper-parameter 𝜌 in Eq.23 is set to 0.1. We choose 50 items in PISA-Australia, items in

MovieLens-1M, and 5,000 items in Lastfm-360K to calculate the regularization term in Eq.15.

As for the self-supervised learning-based propensity estimator, we randomly drop 40% user

nodes to generate corrupted graphs. We obtain h0

𝑢, h0

𝑣 from a well-trained CF model. The encoder

module of the propensity estimator is realized by a combination of aggregation function in Eq.17

and a 2-layer MLP. The attribute classifier module is realized by a 4-layer MLP on MovieLens-1M

and 6-layer MLP on Lastfm-360K. 𝛽 in Eq.22 is selected from {0.001,0.002,0.005,0.01,0.1}.

5.2 Overall Performance
Tables 5, 2, 6, and 3 report the overall results. We have several observations from these tables.
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Table 3. Average counterfactual user fairness performance on Lastfm-360K with varying K.

Model 𝐴𝑇𝐸𝑃 ↓ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ↓ M@K↑
K=20 K=30 K=40

BPR 1.2680 ± 0.0223 2.0428 ± 0.0219 0.1261 ± 0.0130 0.1480 ± 0.0124 0.1661 ± 0.0241

DP-BPR 0.6140 ± 0.0179 1.8840 ± 0.0246 0.2032 ± 0.0156 0.2341 ± 0.0348 0.2571 ± 0.0281

CFFair-BPR 0.3350 ± 0.0169 1.4575 ± 0.0241 0.2054 ± 0.0192 0.2342 ± 0.0256 0.2562 ± 0.0178
GCN 1.4655 ± 0.0235 3.0017 ± 0.0173 0.0784 ± 0.0323 0.0952 ± 0.0136 0.0860 ± 0.0149

FairGo 1.3933 ± 0.0367 2.0765 ± 0.0488 0.1465 ± 0.0410 0.1632 ± 0.0352 0.1772 ± 0.0527

FairGNN 1.2146 ± 0.0412 2.1953 ± 0.0696 0.1476 ± 0.0325 0.1689 ± 0.0414 0.1852 ± 0.0213

DP-GCN 1.4252 ± 0.0241 2.4978 ± 0.0257 0.2466 ± 0.0198 0.2669 ± 0.0144 0.2816 ± 0.0183

CFFair-GCN 1.0529 ± 0.0102 2.0960 ± 0.0178 0.2485 ± 0.0205 0.2751 ± 0.0174 0.2910 ± 0.0172

Table 4. Average counterfactual user fairness performance on the PISA-Australia dataset with varying K.

Model 𝐴𝑇𝐸𝑃 ↓ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ↓ M@K↑
K=20 K=30 K=40

BPR 0.3329 ± 0.0175 1.9044 ± 0.0352 0.2894 ± 0.0146 0.3556 ± 0.0205 0.4263 ± 0.0197

DP-BPR 0.0061 ± 0.0015 0.2762 ± 0.0088 0.5072 ± 0.0233 0.6146 ± 0.0150 0.6982 ± 0.0249

CFFair-BPR 0.0022 ± 0.0006 0.1843 ± 0.0124 0.5152 ± 0.0152 0.6525 ± 0.0147 0.7210 ± 0.0182
GCN 0.3444 ± 0.0122 0.8936 ± 0.0244 0.4841 ± 0.0153 0.5880 ± 0.0141 0.6573 ± 0.0096

FairGo 0.0063 ± 0.0010 0.3954 ± 0.0102 0.5021 ± 0.0262 0.6124 ± 0.0275 0.6832 ± 0.0343

FairGNN 0.0046 ± 0.0012 0.3443 ± 0.0155 0.5110 ± 0.0278 0.6450 ± 0.0317 0.6956 ± 0.0290

DP-GCN 0.0057 ± 0.0010 0.3728 ± 0.0134 0.5077 ± 0.0144 0.6234 ± 0.0102 0.6905 ± 0.0083

CFFair-GCN 0.0031 ± 0.0012 0.3178 ± 0.0193 0.5181 ± 0.0109 0.6549 ± 0.0081 0.7019 ± 0.0162

• First, we observe obvious trade-off effects between fairness and accuracy for all fairness-

aware models. Specifically, all fairness-aware models have better fairness performance (𝐴𝑇𝐸𝑃 ,

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔, M@K) than basic CF models but also suffer a decrease in recommendation perfor-

mance (HR@K, NDCG@K).

• Second, compared to other fairness-aware models, CFFair outperforms baselines on all three

datasets on the average counterfactual fairness metrics (𝐴𝑇𝐸𝑃 ,𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔, M@K), and causes

the least degradation on recommendation accuracy (HR@K, NDCG@K). The results prove

that CFFair can achieve a good balance point between accuracy and counterfactual user

fairness performance. Specifically, on the PISA-Australia dataset, regardless of whether BPR

or GCN is used as the base model, our proposed CFFair outperforms the suboptimal models

by over 30% improvement in ATE and over 7% improvement in the Matching metric.

• Third, FairGNN has better fairness performance and recommendation performance than

FairGo. The reason is that FairGNN utilizes the graph structure to fill up missing sensi-

tive information as guidance for adversarial training. FairGo suffers from the limitation of

incomplete sensitive attributes, leading to a performance decrease.

• Fourth, when it comes to comparing BPR based models and GCN based models, we find that

GCN based models perform obviously better on recommendation performance. The reason is

that GCN based models can capture high-order collaborative signals.

• Last but not least, the statistical fairness orientedmodels (DP, FairGo, FairGNN) are designed

to optimize statistical fairness metrics, but they also improve the average counterfactual user

fairness compared to base models. It proves that partial overlap exists between statistical

fairness and average counterfactual user fairness.
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Table 5. Top-K recommendation performance on MovieLens-1M with varying K.

Model

HR@K↑ NDCG@K↑
K=20 K=30 K=40 K=20 K=30 K=40

BPR 0.2988 ± 0.0038 0.3406 ± 0.0030 0.3821 ± 0.0028 0.2716 ± 0.0023 0.2856 ± 0.0019 0.3008 ± 0.0018
DP-BPR 0.2725 ± 0.0033 0.3145 ± 0.0045 0.3539 ± 0.0049 0.2480 ± 0.0036 0.2620 ± 0.0034 0.2765 ± 0.0036

CFFair-BPR 0.2726 ± 0.0024 0.3147 ± 0.0027 0.3543 ± 0.0028 0.2463 ± 0.0025 0.2608 ± 0.0026 0.2754 ± 0.0026

GCN 0.3022 ± 0.0025 0.3435 ± 0.0031 0.3844 ± 0.0028 0.2744 ± 0.0024 0.2881 ± 0.0027 0.3031 ± 0.0023
FairGo 0.2811 ± 0.0135 0.3252 ± 0.0210 0.3664 ± 0.0198 0.2531 ± 0.0230 0.2680 ± 0.0174 0.2833 ± 0.0156

FairGNN 0.2766 ± 0.0210 0.3202 ± 0.0187 0.3562 ± 0.0213 0.2488 ± 0.0314 0.2634 ± 0.0172 0.2796 ± 0.0190

DP-GCN 0.2819 ± 0.0088 0.3224 ± 0.0039 0.3610 ± 0.0111 0.2590 ± 0.0070 0.2730 ± 0.0063 0.2869 ± 0.0070

CFFair-GCN 0.2818 ± 0.0024 0.3245 ± 0.0022 0.3640 ± 0.0029 0.2564 ± 0.0022 0.2733 ± 0.0022 0.2871 ± 0.0024

Table 6. Top-K recommendation performance on Lastfm-360K with varying K.

Model

HR@K↑ NDCG@K↑
K=20 K=30 K=40 K=20 K=30 K=40

BPR 0.1521 ± 0.0017 0.1960 ± 0.0026 0.2316 ± 0.0031 0.1326 ± 0.0024 0.1525 ± 0.0018 0.1673 ± 0.0046
DP-BPR 0.1237 ± 0.0076 0.1593 ± 0.0093 0.1898 ± 0.0088 0.1105 ± 0.0051 0.1267 ± 0.0045 0.1393 ± 0.0057

CFFair-BPR 0.1373 ± 0.0085 0.1768 ± 0.0064 0.2097 ± 0.0069 0.1216 ± 0.0061 0.1396 ± 0.0043 0.1533 ± 0.0066

GCN 0.1597 ± 0.0063 0.2031 ± 0.0082 0.2389 ± 0.0071 0.1426 ± 0.0045 0.2389 ± 0.0054 0.1771 ± 0.0048
FairGo 0.1387 ± 0.0167 0.1792 ± 0.0132 0.2123 ± 0.0183 0.1222 ± 0.0095 0.1407 ± 0.0084 0.1544 ± 0.0088

FairGNN 0.1428 ± 0.0268 0.1835 ± 0.0190 0.2178 ± 0.0131 0.1267 ± 0.0169 0.1476 ± 0.0152 0.1598 ± 0.0124

DP-GCN 0.1432 ± 0.0084 0.1857 ± 0.0101 0.2204 ± 0.0093 0.1262 ± 0.0063 0.1455 ± 0.0082 0.1599 ± 0.0076

CFFair-GCN 0.1455 ± 0.0097 0.1867 ± 0.0082 0.2203 ± 0.0089 0.1294 ± 0.0078 0.1481 ± 0.0061 0.1620 ± 0.0074

Table 7. Top-K recommendation performance on the PISA-Australia dataset with varying K.

Model

HR@K↑ NDCG@K↑
K=20 K=30 K=40 K=20 K=30 K=40

BPR 0.3476 ± 0.0064 0.3882 ± 0.0053 0.4299 ± 0.0041 0.2428 ± 0.0040 0.2601 ± 0.0047 0.2716 ± 0.0023
DP-BPR 0.3417 ± 0.0051 0.3829 ± 0.0046 0.4223 ± 0.0071 0.2341 ± 0.0077 0.2487 ± 0.0052 0.2630 ± 0.0060

CFFair-BPR 0.3416 ± 0.0063 0.3843 ± 0.0054 0.4228 ± 0.0088 0.2331 ± 0.0042 0.2492 ± 0.0064 0.2626 ± 0.0051

GCN 0.3515 ± 0.0078 0.3939 ± 0.0064 0.4350 ± 0.0068 0.2519 ± 0.0053 0.2682 ± 0.0041 0.2827 ± 0.0056
FairGo 0.3448 ± 0.0114 0.3898 ± 0.0127 0.4301 ± 0.0122 0.2399 ± 0.0104 0.2551 ± 0.0080 0.2684 ± 0.00108

FairGNN 0.3453 ± 0.0133 0.3916 ± 0.0120 0.4325 ± 0.0094 0.2402 ± 0.0094 0.2569 ± 0.0143 0.2711 ± 0.0082

DP-GCN 0.3422 ± 0.0086 0.3913 ± 0.0077 0.4316 ± 0.0099 0.2397 ± 0.0092 0.2559 ± 0.0080 0.2701 ± 0.0075

CFFair-GCN 0.3481 ± 0.0069 0.3921 ± 0.0045 0.4338 ± 0.0068 0.2419 ± 0.0060 0.2588 ± 0.0076 0.2729 ± 0.0061

5.3 Detailed Model Analyses
In this part, we conduct more experiments to better verify the effectiveness of our proposed CFFair.
The following questions will be answered:

(1) Is the graph self-supervised learning estimator better than other classification models?

(2) Will CFFair still have a relatively good performance than basic CF models (i.e., BPR, GCN) on

statistical fairness metrics?

(3) How does the balancing parameter 𝜇 in Eq.(16) affect the trade-off effects of CFFair?
(4) Can CFFair achieve stable improvements on matching-based metrics with varying the simi-

larity threshold 𝜏?

(5) How does CFFair perform if removing the sampling methodology in Eq.(14)?

The effectiveness of the graph self-supervised learning estimator. As discussed in Section

4.3.1, the causal effect estimations highly rely on the accuracy of propensity estimations. To further

boost the performance of propensity estimations, we propose a novel estimator which adopts

graph self-supervised learning. In Section 5.2, we only evaluate recommendation and fairness
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performance rather than directly evaluating the performance of propensity estimations. In this

part, we conduct additional experiments to directly verify the estimator’s effectiveness.

Specifically, we compare our proposed CFFair with several classic classification models, i.e., Label

Propagation (LP) [61], MLP, GR [3], and semi-GCN [26]. As the sensitive attribute is binary, we

choose accuracy and AUC as the evaluation metrics. The results in Table 8 clearly show that our

proposed propensity estimator has the best performance on three datasets. The results prove that

graph self-supervised learning is effective to boost estimation performance.
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Fig. 4. Statistical fairness performance on the smaller dataset MovieLens-1M with varying K.

Performance on statistical fairness. Statistical fairness metrics have been widely adopted by

previous user fairness studies in recommendations [75]. In Table 2 and Table 3, we only compare

average counterfactual fairness performance. In order to better display the capability of our proposed

CFFair, we also evaluate CFFair on the statistical fairness metrics on the smaller dataset MovieLens-

1M.

A commonly-used metric Demographic Parity@K (DP@K) is formulated as

𝐷𝑃@𝐾 =
1

𝑁

𝑁∑︁
𝑣=1

|E𝑢∈𝑈1
[1𝑣∈L(𝑢 )@𝐾 ] − E𝑢∈𝑈0

[1𝑣∈L(𝑢 )@𝐾 ] |. (27)

Specifically, E𝑢∈𝑈1
[1𝑣∈L(𝑢 )@𝐾 ] denotes users’ average preferences in𝑈1 for the item 𝑣 . The quantity

can be computed as follows:

E𝑢∈𝑈1
[1𝑣∈L(𝑢 )@𝐾 ] :=

|𝑢 : (𝑢, 𝑣) ∈ (𝑢,L(𝑢)@𝐾) ∩ (𝑢 ∈ 𝑈1) |
|𝑢 : (𝑢, 𝑣) ∈ (𝑢,L(𝑢)@𝐾) | , (28)

Table 8. Performance of different propensity estimators.

Metric

MovieLens-1M Lastfm-360K

LP MLP GR Semi-GCN CFFair LP MLP GR Semi-GCN CFFair
Accuracy ↑ 0.7484 0.7731 0.7923 0.7983 0.8001 0.6688 0.6796 0.6922 0.6928 0.6997
AUC ↑ 0.8133 0.8179 0.8387 0.8392 0.8415 0.6924 0.6988 0.7011 0.7041 0.7156
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(a) CFFair-BPR with varying 𝜇 (b) CFFair-GCN with varying 𝜇

Fig. 5. Trade-off effects between recommendation accuracy and average counterfactual fairness on the
dataset MovieLens-1M.

where 𝐿(𝑢)@𝐾 denotes user 𝑢’s potentially liked list, (i.e., items in the Top-K list for user 𝑢), and

|𝑢 : (𝑢, 𝑣) ∈ (𝑢,L(𝑢)@𝐾) | denotes the number of users who potentially like item 𝑣 . Other quantities

can be calculated similarly. We modify a statistical fairness metric “value unfairness” [75] in explicit

feedback into implicit feedback, and propose Equal Opportunity@K (EO@K), formulated as:

𝐸𝑂@𝐾 =
1

𝑁

𝑁∑︁
𝑣=1

|E𝑢∈𝑈1
[1𝑣∈R𝑡𝑒𝑠𝑡𝑢 ∩L(𝑢 )@𝐾 ] − E𝑢∈𝑈0

[1𝑣∈R𝑡𝑒𝑠𝑡𝑢 ∩L(𝑢 )@𝐾 ] |, (29)

Note that, the difference between DP@K and EO@K lies in whether focusing on unfairness of

predicted results or predicted accuracy. EO@K focuses on the intersection set of Top-K recom-

mended items (i.e., predicted results) and testing items (i.e., the ground truth). Quantities in EO@K

(Eq.29) can be calculated similarly as DP@K (Eq.28). R𝑡𝑒𝑠𝑡𝑢 denotes items in testing data for user 𝑢.

𝑣 ∈ R𝑡𝑒𝑠𝑡𝑢 ∩ L𝑢@𝐾 denotes that item 𝑣 belongs to the intersection of 𝐿𝑢@𝐾 and R𝑡𝑒𝑠𝑡𝑢 . It can be

seen as “a correct recommendation” between user 𝑢 and item 𝑣 . The smaller DP@K and EO@K

denote better performance on statistical fairness.

As shown in Figure 4, CFFair performs better on statistical fairness metrics than base models, but

not as well as statistical fairness-oriented models, i.e., BPR_DP, GCN_DP. These results demonstrate

that partial overlap exists between statistical fairness and counterfactual fairness. In other words,

optimizing one of the two fairness requirements will also appropriately improve the performance

of the other requirement, but performance of the other requirement will decrease.

Parameter sensitivity analysis. The balancing parameter 𝜇 in Eq.16 controls the trade-off

effects between recommendation performance and average counterfactual fairness. In order to

further verify the trade-off effects, we conduct additional experiments on the smaller dataset

MovieLens-1M with searching 𝜇 in the range of {1 × 10
−5
,2 × 10

−5
,5 × 10

−5
,1 × 10

−4
,0.001,0.01} for

CFFair-BPR, and searching 𝜇 in the range of {2 × 10
−6
,5 × 10

−6
,1 × 10

−5
,2 × 10

−5
,5 × 10

−5
,1 × 10

−4
}

for CFFair-GCN. The corresponding recommendation performance and average counterfactual

fairness are recorded in Figure 5.

From Figure 5, we have two observations. First, we can observe obvious trade-off effects between

accuracy and fairness performance. As 𝜇 increases, both CFFair-BPR and CFFair-GCN perform

better on fairness (M@K increases) but suffer a decrease in accuracy (NDCG@K decreases). Second,

CFFair-BPR becomes to suffer an obvious accuracy decrease when 𝜇 becomes 0.01, and CFFair-GCN
suffers a decrease when 𝜇 is larger than 2 × 10

−5
. The results prove that GCN is more fragile to
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Table 9. Performance of BPR-based models on matching-based metrics on the PISA-Australia dataset with
varying threshold 𝜏 . We highlight the best results with bold font.

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ↓ M@20 ↑
𝜏 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

BPR 2.9954 1.9044 1.5601 1.3659 0.2035 0.2894 0.3490 0.4272

DP-BPR 0.6942 0.2762 0.1367 0.1152 0.3670 0.5072 0.5526 0.6116

CFFair-BPR 0.3797 0.1843 0.1200 0.1078 0.3739 0.5152 0.6007 0.6906
M@30↑ M@40↑

𝜏 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

BPR 0.2678 0.3556 0.4186 0.4991 0.3299 0.4263 0.4899 0.5609

DP-BPR 0.4702 0.6146 0.6884 0.7321 0.4981 0.6982 0.7583 0.7850

CFFair-BPR 0.4717 0.6525 0.7297 0.7938 0.5375 0.7210 0.7782 0.8308

Table 10. Performance of GCN-based models on matching-based metrics on the PISA-Australia dataset with
varying threshold 𝜏 . We highlight the best results with bold font.

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ↓ M@20↑
𝜏 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

GCN 2.5911 0.8936 0.4505 0.3647 0.3061 0.4841 0.5499 0.5996

DP-GCN 1.1317 0.3728 0.2183 0.1852 0.3106 0.5077 0.5824 0.6692

CFFair-GCN 0.8673 0.3178 0.1768 0.1434 0.3211 0.5181 0.6013 0.6848
M@30↑ M@40↑

𝜏 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

GCN 0.3876 0.5880 0.6438 0.6586 0.4462 0.6573 0.7217 0.7451

DP-GCN 0.3979 0.6234 0.6979 0.7592 0.4578 0.6905 0.7591 0.8090

CFFair-GCN 0.4206 0.6549 0.7150 0.7741 0.4978 0.7019 0.7690 0.8208

the fairness-aware regularization term, therefore, we should search the best balancing parameters

more meticulously for CFFair-GCN.
Discussion about matching-based metrics. In order to highlight broad effectiveness rather

than intentional selection, we have conducted more experiments on the PISA-Australia dataset by

adjusting the similarity threshold 𝜏 to 0.5, 0.6, 0.7, and 0.8. Note that, a too high threshold would

result in very few and ineffective matches, while a too low threshold would lead to overly lenient

matching conditions. The results are recorded in Table 9 and 10. There are several observations

from these two tables. First, we find that regardless of how the similarity threshold 𝜏 is varied, our

proposed CFFair consistently achieves a significant improvement of over 2% on all matching-based

metrics. This fully demonstrates the stable advantage of our proposed CFFair on matching-based

metrics. Second, as the threshold 𝜏 increases, all models show improvements. The reason is that a

higher threshold raises the requirements for matching. Hence, fewer pairs can be matched and the

average similarity among these matched users will be higher.

Analyese about the sampling methodology.We would like to explain the rationale behind

the sampling methodology, which is based on observations of the practical experiments. During

the actual training process, we found that using all the data for fairness-aware regularization term

calculation (Eq.14) on the Lastfm-360K dataset exceeded the memory capacity of our GPU. This

prompts us to consider which items should be considered in the regularization. We find that a large

number of ratings for unpopular long-tailed items do not contribute to the fairness goal. Therefore,

we design the sampling methodology. The sampling process consists of two steps. In the first step,

we filter out products with click counts below a certain threshold to exclude unpopular items. In
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Table 11. Average counterfactual fairness performance on PISA-Australia dataset with/without the sampling
methodology.

Model Sampling 𝐴𝑇𝐸𝑃 ↓ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 ↓ M@K↑
K=20 K=30 K=40

DP-BPR ! 0.0061 ± 0.0015 0.2762 ± 0.0088 0.5072 ± 0.0233 0.6146 ± 0.0150 0.6982 ± 0.0249

DP-BPR % 0.0057 ± 0.0012 0.2479 ± 0.0093 0.5194 ± 0.0185 0.637 ± 0.0124 0.7114 ± 0.0107

CFFair-BPR ! 0.0022 ± 0.0006 0.1843 ± 0.0124 0.5152 ± 0.0152 0.6525 ± 0.0147 0.7210 ± 0.0182

CFFair-BPR % 0.0014 ± 0.0004 0.1665 ± 0.0112 0.5296 ± 0.0169 0.6557 ± 0.0134 0.7246 ± 0.0091

DP-GCN ! 0.0057 ± 0.0010 0.3728 ± 0.0134 0.5077 ± 0.0144 0.6234 ± 0.0102 0.6905 ± 0.0083

DP-GCN % 0.0054 ± 0.0013 0.3606 ± 0.0155 0.5289 ± 0.0070 0.6460 ± 0.0121 0.7018 ± 0.0069

CFFair-GCN ! 0.0031 ± 0.0012 0.3178 ± 0.0193 0.5181 ± 0.0109 0.6549 ± 0.0081 0.7019 ± 0.0162

CFFair-GCN % 0.0024 ± 0.0005 0.2822 ± 0.0164 0.5326 ± 0.0126 0.6611 ± 0.0153 0.7028 ± 0.0174

Table 12. Recommendation performance on PISA-Australia dataset with/without the sampling methodology.

Model Sampling

HR@K↑ NDCG@K↑
K=20 K=30 K=40 K=20 K=30 K=40

DP-BPR ! 0.3417 ± 0.0051 0.3829 ± 0.0046 0.4223 ± 0.0071 0.2341 ± 0.0077 0.2487 ± 0.0052 0.2630 ± 0.0060

DP-BPR % 0.3412 ± 0.0042 0.3823 ± 0.0033 0.4207 ± 0.0062 0.2318 ± 0.0081 0.2477 ± 0.0038 0.2615 ± 0.0044

CFFair-BPR ! 0.3416 ± 0.0063 0.3843 ± 0.0054 0.4228 ± 0.0088 0.2331 ± 0.0042 0.2492 ± 0.0064 0.2626 ± 0.0051

CFFair-BPR % 0.3393 ± 0.0092 0.3821 ± 0.0067 0.4205 ± 0.0076 0.2307 ± 0.0046 0.2487 ± 0.0082 0.2614 ± 0.0040

DP-GCN ! 0.3422 ± 0.0086 0.3913 ± 0.0077 0.4316 ± 0.0099 0.2397 ± 0.0092 0.2559 ± 0.0080 0.2701 ± 0.0075

DP-GCN % 0.3411 ± 0.0061 0.3884 ± 0.0089 0.4264 ± 0.0070 0.2384 ± 0.0075 0.2542 ± 0.0036 0.2688 ± 0.0048

CFFair-GCN ! 0.3481 ± 0.0069 0.3921 ± 0.0045 0.4338 ± 0.0068 0.2419 ± 0.0060 0.2588 ± 0.0076 0.2729 ± 0.0061

CFFair-GCN % 0.3470 ± 0.0094 0.3878 ± 0.0028 0.4258 ± 0.0036 0.2415 ± 0.0080 0.2578 ± 0.0034 0.2712 ± 0.0066

the second step, we measure the known behavioral bias between males and females within these

popular items and select a few items with the highest biases as the sampled results.

Additionally, we have conducted comparative experiments on the PISA-Australia dataset by

adding and removing the sampling methodology to show its impact. The results are presented in

Table 11 and 12. In the PISA-Australia dataset, the sampling methodology selects 50 representative

items for computing the regularization term. If we remove the methodology, the calculation will be

on all items. We find that removing the sampling module would cause much time cost, but only

result in a slight decrease in accuracy and a slight improvement in fairness performance. Therefore,

we choose to adopt the sampling methodology.

6 CONCLUSION
In this paper, we argued that most current fairness-aware collaborative filtering models only

considered fairness from a statistical perspective. To this end, we started from the Rubin-Neyman

potential outcome framework, and proved that minimizing causal effects of the sensitive attribute

is equal to achieving average counterfactual user fairness in recommendation. Specifically, we

adopted inverse propensity scores to estimate the causal effects, and formulated the causal effects

as an additional regularization term. To improve the quality of estimation, we proposed a graph

self-supervised propensity estimator to accurately estimate propensities with limited sensitive

information. Experimental results on three real-world datasets clearly showed the effectiveness of

our proposed CFFair on average counterfactual fairness.
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