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In educational data mining, knowledge tracing (KT) aims to model learning performance based on student

knowledgemastery. Deep-learning-based KTmodels perform remarkably better than traditional KT and have

attracted considerable attention. However, most of them lack interpretability, making it challenging to explain

why the model performed well in the prediction. In this paper, we propose an interpretable deep KT model,

referred to as fuzzy deep knowledge tracing (FDKT) via fuzzy reasoning. Specifically, we formalize continuous

scores into several fuzzy scores using the fuzzification module. Then, we input the fuzzy scores into the

fuzzy reasoning module (FRM). FRM is designed to deduce the current cognitive ability, based on which the

future performance was predicted. FDKT greatly enhanced the intrinsic interpretability of deep-learning-

based KT through the interpretation of the deduction of student cognition. Furthermore, it broadened the

application of KT to continuous scores. Improved performance with regard to both the advantages of FDKT

was demonstrated through comparisons with the state-of-the-art models.
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1 INTRODUCTION

Online education systems such asMOOC,ASSISTments, andKhanAcademy are being increasingly
used, producing large amounts of student learning data [1–7]. Knowledge tracing (KT) [8–10]
focuses on predicting future performance based on estimating the over-time knowledge mastery
of students from the learning logs, as shown in Figure 1. KT is one of the important tasks of
educational data mining [11, 12] and can be applied to various scenarios, such as facilitating better
personalized learning resource recommendations [13, 14].

Model interpretability recently has attracted increasing attention in the field of educational data
mining, including the KT task. Interpretability is defined as the ability to provide explanations in
understandable terms to a human [15, 16]. Being able to explain the reasons why the model was
able to achieve good prediction performance in an interpretable KT model is as crucial as achiev-
ing desirable performance [17]. To obtain this understanding, interpretability can be improved
from both intrinsic and post hoc aspects, as shown in Figure 2. Intrinsic interpretability explains
how the model works, the interpretability comes from the model-specific constraints based on the
domain knowledge [18]. The way to construct an intrinsically interpretable model, for example,
is by using interpretable models such as linear regression, decision tree, and decision rules. Post
hoc interpretability provides answers to the question what else can the model tell us. It refers to im-
proving interpretability using model-agnostic methods [18], such as visualization of the features
and effects. KT is more concerned with the cognitive state of the student, and the accuracy of
its assessment cannot be directly measured. Instead, the accuracy of performance predictions is
measured. Therefore, interpretability is significant in KT to explain the process of obtaining the
predicted results and the relationship between the predicted results and the cognitive state.
Since it is difficult to measure students’ knowledgemastery, most existing KTmodels use end-to-

end learning to measure the accuracy of prediction performance [19]. Therefore, interpretability is
typically not the major focus of most existing models, especially for those deep-learning-based KT
models from the intrinsic aspect [19, 20]. This can be analyzed from the following three aspects.
(1) The first deep-learning-based KT model, the deep knowledge tracing (DKT) [21], applied
recurrent neural networks to KT. Estimating student cognition is difficult for DKT, since there is no
interpretable parameter to inspect [22]. It has achieved excellent prediction accuracy owing to its
large vectors of ‘neurons’ which are hard to interpret. (2) With an increasing amount of attention
being paid to interpretable machine learning approaches, some studies have attempted to improve
the interpretability of DKT using post hoc methods such as layer-wise relevance propagation [20]
and visual methods [23]. They have attempted to answer the question of what else the DKT can tell
but have not been able to explain the intrinsic process. (3) Some deep-learning-based KT models
have denoted hidden layers as student cognition to enhance the interpretability to some extent
[24–27]. However, the lack of intrinsic interpretability can also be attributed to how the model
is constructed, its parameters, non-linear activation functions, and so on. In other words, such
models cannot be explained as the interpretable ones, such as decision trees or rules.
Fuzzy theory is a powerful tool to represent human knowledge and mimic human reasoning

capabilities, which is demonstrated as successful applications in education data mining [28, 29].
Fuzzy Cognitive Diagnosis Framework (FuzzyCDF) [28] is a typical cognitive diagnosis frame-
work that leveraged fuzzy theory to model students’ abilities to continuous score scenarios. The
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Fig. 1. Schematic of knowledge tracing. A, B, C, and D represent four knowledge components, examined by

various exercises. Knowledge tracing estimates the over-time cognitive states of students and predicts future

performance based on their cognitive states.

Fig. 2. Schematic of model interpretability, using knowledge tracing as an example. Models with inter-

pretability better reason the obtained prediction than models lacking interpretability, in terms of both intrin-

sic and post-hoc aspects. The former usually explains the working of the model; the latter usually interprets

further workability of the model.

temporal characteristics of the learning logs were not considered in cognitive diagnosis (in other
words, KT can be regarded as a dynamic cognitive diagnosis task). In our previous work, FBKT
[29] reported effective performance fuzzifing the continuous scores into the type-1 and type-2
fuzzy sets in Bayesian KT. However, as is the case with the traditional Bayesian KT [30], they must
classify students’ learning logs by the knowledge components related to the exercises [31]. For
example, (A1,A2,B1,A3,C1,B2) is the original exercising sequence of a student, where A1 denotes
the first exercise related to the knowledge component A. FBKT cannot directly deal with them,
and instead, it preprocessed the sequence into three portions: (A1,A2,A3), (B1,B2), and (C1). As
a result, it changed the temporal information in the original sequence. Furthermore, fuzzy rea-
soning offers a better framework for interpretability considerations owing to its rules [32]. Based
on fuzzy reasoning, the above applications have not utilized fuzzy rules to reason such that they
owned inadequate intrinsic interpretability.
Contributions. The major contributions of this study are as follows, shown in Figure 3. In

this paper, we propose fuzzy deep knowledge tracing (FDKT), which introduces fuzzy neural
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Fig. 3. Schematic of the limitations and contributions.

networks (FNNs) [33] to enhance the interpretability of existing deep-learning-based KT models.
Specifically, FDKT contains three main modules, i.e., the fuzzification, fuzzy reasoning, and pre-
diction modules. First, the continuous scores on the historical exercises are fuzzified into several
fuzzy scores, rather than hard encoding similar to a black box. Subsequently, the current fuzzy
cognition is deduced according to the fuzzy reasoning module, which is the core of the proposed
model improving intrinsic interpretability. Finally, the performance is predicted. It is remarkable
that the proposed model has demonstrated interpretability in terms of both the intrinsic and post
hoc aspects.

— To improve the interpretability (especially in the intrinsic aspect) of the traditional deep-
learning-based KT models, we explored the utility of fuzzy reasoning in the field of KT. The
proposed model combines the advantages of both fuzzy theory and neural networks, i.e.,
the ability to combine language-based knowledge (e.g., expert experience) and the ease of
training the model parameters (e.g., backpropagation).

— To deal with the uncertainty in the KT task, i.e., uncertainty regarding the levels of contin-
uous scores of students and their cognitive states, we extend the application of the most
deep-learning-based KT models in continuous scenarios.

— The above-mentioned two benefits are demonstrated as follows. (a) Its intrinsic interpretabil-
ity is explained through the rules and hidden semantics (Section 5), and post hoc inter-
pretability is experimentally visualized (Section 6.3). (b) Better prediction performance, in
the continuous-score application, is achieved when compared to 14 state-of-the-art models
using four real-world datasets (Section 6.2).

This paper is organized as follows. Related work is reviewed in the next section. In Section 3,
background material is presented, including the deep knowledge tracing and fuzzy neural net-
works. In Section 4, the framework of FDKT is detailed. In Section 5, the intrinsic interpretability
of FDKT is presented. In Section 6, the experiments are discussed. Finally, Section 7 concludes the
paper.
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Table 1. Comparison between FDKT and Some Representative Models1

Models BKT [30] DKT [21] FuzzyCDF [28] FBKT [29]

Fuzzy sets ✗ ✗ ✓ ✓
Fuzzy reasoning ✗ ✗ ✗ ✗
Dynamic data ✓ ✓ ✗ ✓
Continuous scores ✗ – ✓ ✓
Mixing KCs ✗ ✓ ✓ ✗
Interpretability – – Visualization Example

Models DKVMN [24] DeepIRT [25] SAKT [34] KQN [27]

Fuzzy sets ✗ ✗ ✗ ✗
Fuzzy reasoning ✗ ✗ ✗ ✗
Dynamic data ✓ ✓ ✓ ✓
Continuous scores – – – –

Mixing KCs ✓ ✓ ✓ ✓

Interpretability
Attention

& Visualization
Combination2

& Example
Attention

& Visualization
Visualization

Models AKT [35] CKT [36] FDKT

Fuzzy sets ✗ ✗ ✓
Fuzzy reasoning ✗ ✗ ✓
Dynamic data ✓ ✓ ✓
Continuous scores – – ✓
Mixing KCs ✓ ✓ ✓

Interpretability
Attention

& Visualization
Visualization

Rules
& Hidden semantics

& Example
& Visualization

1– refers that the item has not been demonstrated in the paper.
2Combination refers to a combination of the KT model and the traditional model in education.

2 RELATEDWORK

The relatedwork is introduced including the KTmodels and the interpretability in educational data
mining. Several representative models mentioned in this section are compared with the proposed
FDKT in Table 1.

2.1 Knowledge Tracing

With regard to the two mainstream types, that is, Bayesian and deep-learning-based KT models,
the former rely on intrinsic interpretable first-orderMarkovmodels [30]. However, their prediction
performance is not satisfactory as they are less representative in terms of the complexity of the
human brain and human knowledge. The latter have shown remarkable improvement in terms
of prediction accuracy using deep learning methods, with the strong characterization capabilities.
Therefore, they have attracted a significant amounts of attention [21, 24–27, 37].

In the type of deep-learning-based KT models, DKT uses recurrent neural networks (RNNs)

to model student learning and achieves an excellent AUC in prediction performance [21]. Us-
ing a memory-augmented neural network, DKVMN exploits the relationships between concepts
[24]. [38] proposed three distributed memory networks to model student performance, i.e., DMN,
ADMN, IADMN. To enhance the predictive consistency in DKT, [39] introduced regularization
terms to propose DKT+. DKT_DSC assigns students to a distinct classification to improve the
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accuracy of DKT [40]. Deep-IRT is a synthesis of the item response theory (IRT) model and
DKVMN. Thus, it retains the prediction performance of the DKVMN and interpretability of IRT
[25]. The self-attention-based approach SAKT captures a complex representation of human learn-
ing [34]. KQN introduces the probabilistic skill similarity of the knowledge components [27]. AKT
uses a novel monotonic attention mechanism and the Rasch model to regularize the concept and
question embeddings [35]. CKT models individualization in KT [36]. The federated DKT collec-
tively trains high-quality DKT models for multiple silos using the federated learning method [37].
Based on the dual-attentional mechanism, MF-DAKT [41] enriches question representations and
utilizes multiple factors to model the knowledge tracing process. CL4KT [42] uses four data en-
hancement methods and hard negatives to reveal the learning history of similar and dissimilar
semantics. With the evolution of graph neural networks [43–46], researchers have begun delving
into the graph structural relationshipswithin KT tasks. GIKT [47] employs the graph convolutional
network to effectively integrate the problem-skill correlation.

2.2 Interpretability in Educational Data Mining

In recent years, model interpretability has attracted more attention by researchers in the field of
educational data mining, including student models. A model is expected to be easy to understand
with satisfactory prediction performance [20]. In this subsection, the existing studies towards in-
terpretable student models are introduced (KT is considered as a type of student model).
For the traditional student models like DINA [48], IRT [49], LFA [50], PFA [50], and BKT [30],

they provide better understanding based on interpretable probabilistic statistics or Markovmodels,
and the like. To improve the prediction performance of the traditional models, deep-learning-based
models spring up. However, it is an open problem of model interpretability because there are large
vectors of artificial ‘neurons’ [21, 31].

To alleviate this problem, we classify the subsequent work into the following categories.
(1) Some introduced the educational theory into the models. For example, NeuralCD [51] placed
a monotonicity assumption taking from an educational property on the framework to enhance
its interpretability, where the monotonicity assumption is described as follows: the probability of
correct response to the exercise is monotonically increasing at any dimension of the student’s
knowledge proficiency. DIRT [52] and Deep-IRT [25] combined deep learning with IRT to make
the model more explainable. (2) Attention-based methods also offer some interpretability to stu-
dent models. For example, References [24, 35, 53, 54] utilized attention mechanism to make the
models more interpretable. (3) Many studies also take advantage of visualization towards inter-
pretability [24, 27, 28, 34–36, 55–57]. They vividly demonstrated part of the results of the models
via visualization.

The above studies have made a certain effort towards interpretable KT models, owing to the
methods like visualization and attention. However, the KT models with intrinsic interpretability
still need to be further explored.

3 BACKGROUND

The backgrounds in DKT, fuzzy theory, and fuzzy neural networks (FNN) are introduced.

3.1 Deep Knowledge Tracing

KT models the students’ performance on exercises in a time-varying prediction task, where each
exercise is related to a knowledge component.
We use the DKT model as an example to explain the KT process. As shown in Figure 4, the

student answers an exercise at each time step. x1,x2, . . . ,xT denotes the input vector at each time
step, where x t contains the following two aspects of information: (1) the knowledge components

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 139. Publication date: May 2024.
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Fig. 4. Framework of the DKT models [21]. In the model, there are input, hidden, and output layers, where

input and output layers corresponding to the observed performance and predicted performance, respectively.

xt , kt , and yt are the representation vectors of observed performance, hidden variable, and predicted per-

formance at time step t , respectively.

of the exercise that the student answers at time step t ; and (2) the score of the exercise that the
student achieves at time step t . In particular, the scores of exercises in the traditional DKT model
were only taken in {0, 1}. y1,y2, . . . ,yT denotes the output vector at each time step, where yt
represents the predicted probability vector that the student would respond with correct answers
to the exercises, related to each knowledge component at time step t . k1,k2, . . . ,kT denotes the
hidden vector in the network that temporarily stores information. The objective of the DKTmodel
is to minimize the negative log-likelihood of the observed sequence of the students’ scores.

3.2 Fuzzy Theory

Fuzzy logic [58] is an expansion of binary logic. It was developed to address ambiguities that exist
in the real world, such as hot and cold, fast and slow, and large and small. In classical two-valued
logic, all objects are assumed explicit [59]. For example, in a classification task, an object may or
may not belong to this class. Fuzzy logic solves many problems in reality that cannot be clearly
described.
Fuzzy Sets and Membership Functions. Fuzzy sets [60] are a fundamental concept in fuzzy

logic theory. Fuzzy sets allow for the representation of uncertainty and vagueness by assigning
degrees of membership to elements. In a fuzzy set, each element of the universe of discourse can
have a membership value ranging from 0 to 1, indicating the degree to which the element belongs
to the set. The membership function defines this mapping of elements to membership degrees.
Various types of membership functions can be used, such as triangular, trapezoidal, Gaussian, or
sigmoidal functions, depending on the nature of the problem and the desired representation. A
formal description of the fuzzy sets and their operations is as follows: Suppose there exist fuzzy

sets M̃i and S̃ j . The membership functionsmf (k)i andmf (k)j denote the degrees to which element

k belongs to M̃i and S̃ j , respectively.
T-norm Fuzzy Logics. The main objective of t-norm fuzzy logics [61] is to extend classical two-

valued logic by introducing intermediary truth values between 1 (representing truth) and 0 (repre-
senting falsity). These intermediary truth values serve to quantify the degrees of truth associated
with propositions. The degrees of truth in t-norm fuzzy logics are considered to be real numbers
within the range of the unit interval [0, 1]. Prominent examples include theminimum t-norm, prod-

uct t-norm, and Lukasiewicz t-norm, among others. For example, the fuzzy intersected set of M̃i

and S̃ j is denoted by M̃i � S̃ j . When using minimum t-norm logics, the membership functionmf (k)i, j

is defined asmf (k)i, j = min{mf (k)i ,mf (k)j }. When using product t-norm logics,mf (k)i, j =mf (k)i ·mf (k)j .

Due to the widespread application of the minimum t-norm in fuzzy logic, this calculation method
will be used in the subsequent sections.

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 139. Publication date: May 2024.
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Table 2. Notations

Notation Description

I Number of the fuzzy cognition sets
J Number of the fuzzy score sets
K Number of the knowledge components
T Total time steps

x (k)t Observed score on the knowledge components k at time step t , k ∈ {1, 2, . . . ,K}, t ∈ {1, 2, . . . ,T }

y(k)t Target score of the knowledge components k at time step t , k ∈ {1, 2, . . . ,K}, t ∈ {1, 2, . . . ,T }

ŷ(k)t Predicted score of the knowledge components k at time step t , k ∈ {1, 2, . . . ,K}, t ∈ {1, 2, . . . ,T }

m(k)
t Student’s cognition of the knowledge components k at time step t , k ∈ {1, 2, . . . ,K}, t ∈ {1, 2, . . . ,T }

M̃i The i-th fuzzy cognition set, i ∈ {1, 2, . . . , I }

S̃ j The j-th fuzzy score set, j ∈ {1, 2, . . . , J }

mc(k)t,i Membership value (probability) ofm(k)
t ∈ M̃i

ms(k)t, j Membership value (probability) of x (k)t ∈ S̃ j

RNi, j Fuzzy rule node whenm(k)
t−1 ∈ M̃i and x

(k)
t ∈ S̃ j

ri, j Output of the fuzzy rule node RNi, j

μ j Mean value in the Gaussian membership function of S̃ j
σj Standard deviation value in the Gaussian membership function of S̃ j
w1 Weight vector in the prediction module
w2 Weight vector in the fuzzy reasoning module

Fuzzy Rules. A fuzzy system is essentially a rule-based expert system consisting of a set of
linguistic rules and one of the most commonly used fuzzy rules in the form of IF-THEN [62]. A

formal description of the fuzzy rules is as follows: R: IF x1 is M̃1, and ..., xi is M̃i , THEN y1 is S̃1,
and ..., and yj is S̃ j , where M̃1, . . . , M̃i and S̃1, . . . , S̃ j are fuzzy sets.

3.3 Fuzzy Neural Networks

FNN is gradually turning into a research hotpot, because it combines the powerful calculation and
representation capabilities of the neural networks with the heuristic expert knowledge of the fuzzy
system. For example, IF-THEN [62] (introduced in Section 3.2) expresses the output preferences
under the specified conditions, which is a kind of knowledge.
The traditional FNN is limited to static problems due to its feedforward network structure [33].

To address this shortcoming, Lee and Teng [63] proposed the recurrent FNN (RFNN) by capturing
the dynamic response of the system through its internal feedback loop, which is more suitable for
describing dynamic systems as compared to the FNN.
In the RFNN, there are four layers: input, membership, rule, and output layers. The input nodes

are fuzzified into the membership layers that contain the memory terms storing the past informa-
tion of the network. The membership nodes enter the rule layer through the application of fuzzy
intersection operation (detailed in Section 3.2). Finally, the output nodes are obtained through a
linear combination of each rule node. The RFNN can be shown to be a universal uniform approxi-
mator for continuous functions over compact sets if it satisfies a certain condition [63].

4 FRAMEWORK OF FDKT

FDKT is proposed to enhance the interpretability of the deep-learning-based KT models, owing
to the reasoning of the fuzzy rule-based module. In this section, we first formulate the task and
then present the model of the FDKT containing the fuzzification, fuzzy reasoning, and prediction
modules. Subsequently, the rules of fuzzy reasoning and the layered operation of FDKT are detailed.
Finally, the time complexity is analyzed.
The notation used in this paper is listed in Table 2.

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 139. Publication date: May 2024.
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Fig. 5. Schematic of the FDKT. (a) is the framework of FDKT, which includes three main modules: fuzzifica-

tion, fuzzy reasoning, and prediction. (b) and (c) depict the network structures of FDKT and FRM at time

step t , respectively.

4.1 Formulation

FDKT aims to estimate student cognition of the knowledge components and predict their future
performance on exercises based on previous performance. Notably, the input is the performance
which is continuous; however the input has been bisected in most existing studies. We denote
I , J ,K as the numbers of fuzzy cognition sets, fuzzy score sets, and knowledge components, re-
spectively. Further,T is the total time step. The input consists of the input continuous score xt and

knowledge component k,k ∈ {1, 2, . . . ,K}. FDKT estimates the current cognition (m(1)
t , . . . ,m

(K )
t )

and predicts the next-time-step performance y(k
′)

t ,k
′ ∈ (1, 2, . . . ,K) on k ′ based onm(k ′)

t . For the

current cognition of k , m(k)
t ∈ M̃1, . . . ,m

(k)
t ∈ M̃I with probabilities of mc(k)t,1 , . . . ,mc(k)

t, I , respec-

tively, where {M̃1, M̃2, . . . , M̃I } denotes I fuzzy cognition sets. For clarity, the notation used is
listed in Table 2, in order of appearance in this paper.
Optimization. The objective of FDKT is to minimize the loss Lf = l(y, ŷ) between the ground

truth and prediction scores, optimized through gradient descent on batches. l(·) denotes the mean
absolute error.

4.2 Model

The framework of FDKT is shown in Figure 5(a). In the framework, the fuzzy score sets and fuzzy
cognition sets are defined as follows. Fuzzy score sets are the fuzzy sets defined for the contin-
uous scores obtained by students answering the exercises. Different fuzzy score sets represent
different score levels and continuous scores belong to fuzzy score sets with a certain probability.
Fuzzy cognition sets are the fuzzy sets defined for the students’ cognitive states of knowledge

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 139. Publication date: May 2024.
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ALGORITHM 1: Fuzzy deep knowledge tracing

1: Input: I , J ,K ,T ,x (k)t

2: Output: y

3: Initialize (mc(1)0 ,mc(2)0 , . . . ,mc(K )
0 ) on K knowledge components at initial time step.

4: Let t = 1.
5: while t <= T do

6: Fuzzify x (k)t into J fuzzy scores S̃ with membership valuesms(k)t through the fuzzification
module.

7: Obtainmc(k)t of k from FRM (conducted by Algorithm 2).

8: Obtainmc(1)t , . . . ,mc(k−1)t ,mc(k+1)t , . . . ,mc(K )
t (mc(k

′)
t =mc(k

′)
t−1,k

′ � k).
9: Predict the performance ŷt = (ŷ(1)t , ŷ

(2)
t , . . . , ŷ

(K )
t ).

10: end while

11: return ŷ = (ŷ1, ŷ2, . . . , ŷT ).

components. Different fuzzy cognition sets represent different levels of cognition. As shown in
Figure 5(a), FDKT contains three main modules: the fuzzification, fuzzy reasoning, and prediction
modules.
Specifically, the network structure of FDKT at time step t is shown in Figure 5(b). The fuzzifi-

cation module addresses the input of the continuous score x (k)t into the fuzzy scores (denoted as

S̃ = {S̃1, S̃2, . . . , S̃ J }). The fuzzy reasoning module (FRM) determines the current fuzzy cogni-

tionm(k)
t based on the fuzzy scores from the fuzzification module and the historical cognitionm(k)

t−1

of k , wherem(k)
t−1 is obtained from (m(1)

t−1, . . . ,m
(K )
t−1) through the memory gate. FRM promotes the

interpretability of FDKT because it can estimate the student cognition on knowledge components
through the use of fuzzy rules, thereby explaining the result of the prediction performance. Finally,

the prediction module obtains the future performance yt based on (m(1)
t , . . . ,m

(K )
t ).

The pseudo-code of FDKT is detailed in Algorithm 1. The remainder of this section details the
three modules.

4.2.1 Fuzzification Module. The fuzzification module fuzzifies the continuous scores into sev-
eral fuzzy scores. The continuous score has a certain probability belonging to each fuzzy score,
where the probability is referred to as the membership. The Gaussian fuzzy logic system is applied
to describe the membership function of the fuzzy scores, as detailed in Equation (1). It is worth
noting that, after calculating the membership degrees of an individual to different fuzzy sets, we
performed probability normalization on these membership degree values to ensure their sum is
equal to 1. This normalization was done to transform all membership degree distributions into a
standardized form, allowing for a more intuitive representation of the relative sizes and propor-
tions of probabilities.

ms(k)t, j = exp

{
−
(x (k)t − μ j )

2

σ 2
j

}
, (1)

where x (k)t denotes the continuous score at time step t related to the knowledge componentk .ms(k)t, j

denotes the membership of x (k)t belongs to the fuzzy score S̃ j . μ j and σj denote the mean and std

of S̃ j , respectively.

4.2.2 Fuzzy Reasoning Module. The network structure of FRM is designed as follows, and the
process of fuzzy reasoning is detailed in Section 4.3. FRM determines the current cognition at each
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ALGORITHM 2: Fuzzy reasoning module

1: Input: mc(k)t−1 = (mc(k)t−1,1,mc(k)t−1,2, . . . ,mc(k)
t−1, I ) andms(k)t = (ms(k)t,1 ,ms(k)t,2 , . . . ,ms(k)

t, J )

2: Parameter: w2

3: Output:mc(k)t

4: Calculate r = (r1,1, r1,2, . . . , rI, J ) according to Equation (2).
5: Let u = 1.
6: while u <= I do
7: Calculatemc(k)t,u thatmk

t ∈ M̃u according to Equation (3).
8: end while

9: returnmc(k)t = (mc(k)t,1 ,mc(k)t,2 , . . . ,mc(k)
t, I ).

time step, based on both last cognition (factor A) and current performance of the exercise (factor
B). The former is obtained from the fuzzy cognition at time step (t − 1) and the latter is the output
of the fuzzification module at time step t . As shown in Figure 5(c), different combinations of factors
A and B lead to different fuzzy cognitions. Therefore, there are I ∗ J fuzzy rules corresponding to
I ∗ J combinations of factors A and B. The pseudo-code of FRM is detailed in Algorithm 2, where
ri, j ∈ r is the output of the fuzzy rule node RNi, j , given by Equation (2).

ri, j =ms(k)t, j ∗mc(k)t−1,i . (2)

Subsequently, the probabilitymc(k)t,u that the current cognitionm
(k)
t ∈ M̃u is given by Equation (3).

mc(k)t,u = fw 2,u (r ) =
I∑
i=1

J∑
j=1

wu,i, j ∗ ri, j . (3)

w2 = (w2,1,w2,2, . . . ,w2, I ) denotes the adjustable weight, wherew2,u = (wu,1,1,wu,1,2, . . . ,wu, I, J ),
u ∈ {1, 2, . . . , I }.

4.2.3 Prediction Module. The prediction module predicts the future performance of the stu-
dents on exercises based on their current cognition of the knowledge components. Specifically,
there are K outputs in the prediction process, as shown in Equation (4), corresponding to the pre-
diction performance on the exercise related to K knowledge components. The performance on k
is calculated using a linear function as expressed in Equation (5).

ŷt = (ŷ(1)t , . . . , ŷ
(K )
t ), (4)

where ŷ(k)t ,k ∈ {1, 2, . . . ,K} satisfies Equation (5).

ŷ(k)t = fw1,k
(mc(k)t ) = w1,k ·mc(k)t . (5)

w1 = (w1,1,w1,2, . . . ,w1,K ) denotes the adjustable parameter, where w1,k = (w1,k,1,w1,k,2, . . . ,

w1,k, I ), k ∈ {1, 2, . . . ,K}.mc(k)t = (mc(k)t,1 ,mc(k)t,2 , . . . ,mc(k)
t, I ).

4.3 Fuzzy Reasoning

The process of fuzzy reasoning is detailed, to deduce the current fuzzy cognition from the last
fuzzy cognition and the current performance. This is the core of the interpretability of FDKT.
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4.3.1 Reasoning in Memory Gate. According to the network structure of FDKT at time step
t in Figure 5(b), the current fuzzy cognition is obtained from the FRM or directly from the last

fuzzy cognition through the memory gate. In other word, mc(k)t satisfies the decision rules as

R1 = {R1(1),R1(2), . . . ,R1(K )}, where R1(k)(k ∈ {1, 2, . . . ,K}) is given by Equation (6).

R1(k): if k = k ′, thenmc(k)t satisfies FRM(mc(k)t−1),

elsemc(k)t =mc(k)t−1,

when k ′ is the knowledge component at time step t .

(6)

The antecedent is the knowledge component k whether related to the exercise at time step t , and

the consequent is the probability of the current cognition mc(k)t . FRM(mc(k)t−1) is denoted as the
current cognition obtained from the FRM.

4.3.2 Reasoning in FRM. According to the network structure of the FRM in Figure 5(c), the
current fuzzy cognition is obtained from the current performance on the exercise and the last
fuzzy cognition through I ∗ J fuzzy rules, where I and J denote the numbers of the fuzzy cognition

and fuzzy score sets, respectively. For each fuzzy rule node RNi, j , its effects on m(k)
t belonging

to M̃1, . . . , M̃I satisfy the rules expressed in Equation (7), where the antecedents are the current

performance x (k)t and last cognitionm(k)
t−1 and the consequent is the effects of R2(k)i, j .

R2(k)i, j : ifm
(k)
t−1 ∈ M̃i with probabilitymc(k)t−1,i

and x (k)t ∈ S̃ j with probabilityms(k)t, j ,

then the effect onm(k)
t ∈ M̃1 isw1,i, j ∗ ri, j ,

and ... and the effect onm(k)
t ∈ M̃I iswI,i, j ∗ ri, j ,

(7)

where ri, j is obtained according to Equation (2). The fuzzy rule node RNi, j indicates the combina-

tion of factors A and B, where the former ism(k)
t−1 ∈ M̃i and the latter is x (k)t ∈ S̃ j .m

(k)
t andm(k)

t−1

denote the cognition of k at time steps t and t − 1, respectively. x (k)t denotes the continuous score

of k . M̃i and S̃ j represent the i-th fuzzy cognition set and the j-th fuzzy score set, respectively.
Then, the current fuzzy cognition is obtained from the fuzzy rule nodes, satisfying rule R3 =

{R3(1),R3(2), . . . ,R3(K )}. R3(k) = {R3(k)1 , . . . ,R3
(k)
I
}(k ∈ {1, 2, . . . ,K}), where R3(k)u (u ∈ 1, 2, . . . , I )

satisfies Equation (8).

R3(k)u : if the effect of RN1,1 onm
(k)
t ∈ M̃u iswu,1,1 ∗ r1,1,

and ...

and the effect of RNI, J onm
(k)
t ∈ M̃u iswu, I, J ∗ rI, J ,

then the probability ofm(k)
t ∈ M̃u is

I∑
i=1

J∑
j=1

wu,i, j ∗ ri, j ,

(8)

where the antecedents are the effects of the fuzzy rule nodes, and the consequent is the current

cognitionm(k)
t ∈ M̃u . This FRM in FDKT can be considered as a dynamic fuzzy inference system

because its input contains a memory term for storing the past fuzzy cognition using the feedback
unit [63].

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 139. Publication date: May 2024.



FDKT: Towards an Interpretable Deep Knowledge Tracing via Fuzzy Reasoning 139:13

Fig. 6. The architecture of FDKT (taking the t-th time step as an example) is presented to explain the hidden

semantics from the input to the output of the FDKT.

4.4 Layered Operation of FDKT

The layered operation of the proposed model FDKT is detailed in this subsection to describe the
integration of the three modules, as shown in Figure 6. We denote i(p)(t) and o(p)(t) as the input
and output in the p-th layer (p ∈ {1, 2, 3, 4, 5} in the architecture) at time step t .

For the fuzzy cognition of the knowledge component at time step t , the operation for the 1, 2, 3, 4-
th layers is shown in Equations (9)–(15). For the knowledge component that is not at time step t ,
the operation before the 5-th layer is shown in (16).

The input in the (p+1)-th layer equals the output in the p-th layer for the layer without memory

terms (p ∈ {1, 3, 4}). In other words, i(p+1)(t) = o(p)(t),p ∈ {1, 3, 4}. In the 1-th layer, the output
equals the input given by Equation (9).

o(1)(t) = i(1)(t). (9)

o(2)(t) = (o(2)1 (t),o(2)2 (t), . . . ,o(2)
J
(t)), (10)

where o(2)j (t) satisfies Equation (11).

o(2)j (t) = exp

{
−
(i(2)(t) − μ j )

2

σ 2
j

}
, j ∈ {1, 2, . . . , J }, (11)

where J is the number of fuzzy score sets. μ j and σj denote the mean and std in the membership

function of the fuzzy score set S̃ j , respectively.
In the 3-th layer, that is, the fuzzy rule layer with the memory terms, its input contains two

aspects is(3)(t) = (is(3)1 (t), is(3)2 (t), . . . , is(3)
J
(t)) and ic(3)(t) = (ic(3)1 (t), ic(3)2 (t), . . . , ic(3)

I
(t)). J and I
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are the numbers of fuzzy score sets and fuzzy cognition sets, respectively.

o(3)(t) = (o(3)1,1(t), . . . ,o
(2)
I, J (t)), (12)

where o(3)i, j (t) satisfies Equation (13).

o(3)i, j (t) = is
(3)
j (t)

∏
ic(3)i (t), (13)

where is(3)j (t) = o(2)(t) and ic(3)i (t) = o(4)(t − 1).

o(4)(t) = (o(4)1 (t), . . . ,o(4)
I
(t)), (14)

where o(4)u (t),u ∈ {1, 2, . . . , I } satisfies Equation (15).

o(4)u (t) =
I∑
i=1

J∑
j=1

wu,i, j ∗ i
(4)
i, j (t), (15)

wherewu,i, j ∈ {w1,i, j ,w2,i, j , . . . ,wI,i, j } is an adjustable parameter.
For the fuzzy cognition of the knowledge components not at time step t , the operation for the

1, 2, 3, 4-th layers is given by Equation (16).

o(4)u (t) = o(4)u (t − 1). (16)

Thus, the fuzzy cognition of all the knowledge components o(4)(t) = {o(4)1 (t),o(4)2 (t), . . . ,o(4)
K
(t)}

is obtained, whereK is the number of knowledge components. o(4)
k
(t),k ∈ {1, 2, . . . ,K} is obtained

using Equation (14) if k is the conducted knowledge component or Equation (16) otherwise. Sub-
sequently, the input and output of the 5-th layer are given by Equation (17).

o(5)(t) = (o(5)1 (t), . . . ,o(5)
K
(t)), (17)

X where o(5)
k
(t),k ∈ {1, 2, . . . ,K} satisfies Equation (18).

o(5)
k
(t) = f (i(5)

k
(t)), (18)

where f (·) is a linear function. i(5)
k
(t) = o(4)

k
(t) and o(4)

k
(t) = (o(4)1 (t), . . . ,o(4)

I
(t)).

4.5 Time Complexity

The time complexity of FDKT is analyzed as follows. The FDKT algorithm is presented in Algo-
rithm 1, invoking Algorithm 2. The time complexity of Algorithm 2 isO(I 2 J ), where I and J denote
the numbers of fuzzy cognition sets and fuzzy score sets, respectively. Algorithm 2 is in the loop
with respect to the time steps of Algorithm 1. Therefore, the time complexity of FDKT (Algorithm 1)
for an epoch is O(T I 2 J ), where T denotes the total number of time steps.

We also analyze the complexities for other KT models (shown in Table 1), which are detailed in
Appendix. The time complexity of the proposed FDKTmodel can be observed to be lower than that
of the neural network-based KT models because the values of the fuzzy cognitive and fuzzy score
sets are set to integers less than 10, whereas the general representation dimension is set to tens or
hundreds. Noteworthily, at lower time complexity, FDKT performs better than the general neural
network-based KT models in continuous scenarios, with more convenient parameter optimization
than traditional non-neural-network-based KT models.
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5 INTRINSIC INTERPRETABILITY OF FDKT

As mentioned previously, there are two types of interpretability: intrinsic and post hoc. In this sec-
tion, FDKT is explained using rules and hidden semantics to demonstrate its intrinsic interpretabil-
ity [15], in other words, to answer the question, how does the model work (shown in Figure 2(b)).
Then, an example is considered to clearly demonstrate the process followed by FDKT. The inter-
pretability of FDKT is also illustrated from the post hoc aspect via experiments (Section 6.3).

5.1 Explanation by Rules

In this subsection, FDKT is explained with the help of the rules, where the rules may be the most
powerfully explanatory model [64].

From the input to the output of FDKT, the current cognition of the students is deduced using
the rules (R1,R2, and R3) expressed in Section 4.3, and subsequently, the future performance is
predicted according to the current cognition using Equation (5). Specifically, after the fuzzification
of the input continuous score, R1 is to select the fuzzy cognition of the knowledge component to
be updated. The selected fuzzy cognition and the fuzzy score are both fed into the FRM, and they
will first meet R2. The number of the rules in R2 depends on the combinations of the fuzzy cogni-
tion and the fuzzy score. Each fuzzy rule node generates its effect on the current fuzzy cognition,
according to its corresponding rule in R2. Subsequently, each rule in R3 obtains the probability of
the current fuzzy cognition by summing the effects of all the fuzzy rule nodes.
In the proposed model, the network structure is constructed based on the fuzzy rules, which

rely on prior knowledge. This demonstrates that FDKT has intrinsic interpretability.

5.2 Explanation by Hidden Semantics

Based on common knowledge of this field, we make sense of the semantics of the hidden layers
and parameters in the model. This makes the process significantly easier to understand.

5.2.1 Semantics of Hidden Layers. The input nodes are fed into the fuzzification module to
obtain the fuzzy scores. Then, the fuzzy cognition nodes are obtained from fuzzy scores through
fuzzy rule nodes using the FRM. Finally, the output prediction performance is obtained from the
fuzzy cognition using the prediction module.

5.2.2 Semantics of Parameters. In the fuzzification module, μ = (μ1, . . . , μ J ), and σ =

(σ1, . . . ,σ J ) (Equation (1)) denote the mean and std of each fuzzy score set, respectively.
In the FRM, ri, j (Equation (2)) denotes the probability of the fuzzy rule node RNi, j , specifically,

the probability that the last cognition m(k)
t−1 ∈ M̃i and the current fuzzy score x (k)t ∈ S̃ j . mc(k)t,u

(Equation (3)) represents the probability that the current cognition m(k)
t ∈ M̃u . wu,i, j represents

the contribution of the fuzzy rule node RNi, j to each fuzzy cognition of M̃u . When ri, j increases

by 0.1,mc(k)t,u increases by 0.1 ∗wu,i, j (wu,i, j ∈ w2) (Equation (2)).
In the prediction module,w1 (Equation (5)) represents the contribution of the fuzzy cognition

to the predicting performance. Ifmc(k)t,u increases by 0.1, the prediction performance on k increases
by 0.1 ∗w1,k,u (w1,k,u ∈ w1).

5.3 Example

By reviewing Figure 2, the interpretable model explains why the model can obtain this prediction.
Based on this, a simple example is considered to discuss the interpretability of FDKT. As can be
understood from Figure 7, FDKT can not only obtain the prediction results but also explain them.
Five fuzzy cognition sets (i.e., the first to fifth bin from the best to the worst) and four fuzzy score

sets (i.e., poor, medium, good, and excellent) are defined in the example. It is worth noting that,

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 139. Publication date: May 2024.



139:16 F. Liu et al.

Fig. 7. An illustrative example of the whole FDKT process for an individual at a time step is provided. Five

fuzzy cognition sets and four fuzzy score sets were defined. FDKT outputs the prediction performance for

Sam. More importantly, it explains that he may obtain the highest score on Ka as he has a good level of

mastery (2-bin) on it, where his current cognition was updated via the fuzzy reasoning.

after calculating the membership degrees of an individual to different fuzzy sets, we performed
probability normalization on these membership degree values to ensure their sum is equal to 1.
This is for the standardized degree distributions and the convenience of neural network computa-
tions [65–67]. Suppose that Sam performed some exercises related to three knowledge components
Ka ,Kb , andKc , and the last fuzzy cognition of them is given. At time step t , Sam received a score of
0.4 when conducting an exercise related toKa . (0, 0.6, 0.4, 0) is obtained through the fuzzification
module, representing that there is a great possibility that the score of 0.4 is indicative of mediocre
performance.
Then, FRM infers the current fuzzy cognition of Ka through different combinations of the last

fuzzy cognition and the current fuzzy score ofKa . Themaximum possibility of the rule is 0.4∗0.6 =
0.24 of Rule 6, in which the last fuzzy cognition on Ka is in 2-bin with a probability of 0.4, and the
current fuzzy performance is in the medium range with a probability of 0.6. Therefore, the effect
of Rule 6 on the five probabilities of the current fuzzy cognition is the largest, compared with the
other 19 rules.
Finally, the prediction (0.67, 0.25, 0.35) on Ka , Kb , and Kc are obtained through the prediction

module. FDKT outputs the prediction performance for Sam, as it explains that he may obtain the
highest score on Ka because he has achieved a good level of mastery (2-bin) on it.

6 EXPERIMENTS

(1) How does FDKT perform in continuous score scenarios (Section 6.2) and (2) how FDKT does
interpretation (Section 6.3). The parameters in FDKT are analyzed in Section 6.4.

6.1 Setup

The setup is introduced, including the datasets, baselines, and evaluation index.

6.1.1 Datasets. Four well-known datasets were used in the experiments: Algebra05, Algebra06,
Bridge06 [68], and ASSISTments (https://sites.google.com/site/assistmentsdata/). To evaluate the
performance of the models in continuous-score scenarios, the datasets were preprocessed as in
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Table 3. Description of Data Sets

Name Students Exercises Skills Logs

Algebra05 514 172,758 435 605,051
Algebra06 1,247 549,165 1,701 1,805,754
Bridge06 1,100 129,186 564 1,816,138
ASSISTments 4,163 17,751 149 283,105

[29], according to [69, 70]. We filtered the logs of students who practiced less than 10 exercises
[26, 71]. After preprocessing, the size of the datasets is listed in Table 3.

6.1.2 Baselines. To demonstrate the prediction performance of FDKT, it was comparedwith the
following deep learning-based KT models: DKT1 [21], DKVMN2 [24], DeepIRT3 [25], SAKT4 [34],
KQN5 [27], AKT6 [35], CKT7 [36], DMN8 [38], ADMN8 [38], IADMN8 [38], DKT+9 [39], CL4KT10

[42], GIKT11 [47], and APGKT12 [72]. The models are introduced in Section 2. We treated partially
correct responses as wrong if the scores for the compared models were less than 0.5 due of their
inapplicability to continuous scenarios [28].

In this paper, the Bayesian-based KT models were not included in the baselines, because they
must mark the relationship between exercises and knowledge components and classify the exer-
cises with the same knowledge components (detailed in Section 1). In this way, the temporal prop-
erties of the learning sequences would be altered after adopting this pretreatment. Thus, it has less
reference value when compared between themwith deep-learning-based KT models. Moreover, as
mentioned previously, KT can be regarded as a dynamic cognitive diagnosis task. The cognitive
diagnosis models require a students’ interactive matrix with the same exercises, for example, a ma-
trix with the size of 3000*20 where there are 3,000 students and 20 exercises. Note that there is no
temporal relationship between these 20 exercises. However, the three data sets used in the experi-
ments do not satisfy such an input. Students have different lengths of interaction sequences with
the temporal relationship. For example, some students only have 10 interactions, while some have
more than 3,000 interactions. Therefore, the cognitive diagnosis models were also not included in
the baselines.

6.1.3 Evaluation. KT in continuous-score scenarios can be regarded as a regression task. Thus,
two regression metrics, RMSE andMAE, were selected to quantify the prediction performance of
the models [28].
The parameters used in FDKT are listed in Table 4. The batch size of the datasets was set to 128.

The experiments were conducted using the five-fold cross-validation method to obtain stable
results. All the experiments were implemented using the PyTorch public toolbox on a standard
Ubuntu 16.04.7 LTS with TU102 USB Type-C UCSI Controller GPUs and 512 GB memory size.

1https://github.com/lingochamp/tensorflow-dkt [21]
2https://github.com/jennyzhang0215/DKVMN [24]
3https://github.com/ckyeungac/DeepIRT [25]
4https://github.com/TianHongZXY/pytorch-SAKT [34]
5https://github.com/JSLBen/Knowledge-Query-Network-for-Knowledge-Tracing [27]
6https://github.com/arghosh/AKT [35]
7https://github.com/bigdata-ustc/Convolutional-Knowledge-Tracing [36]
8https://github.com/nathan-f-elazar/Distributed-Memory-Networks [38]
9https://github.com/ckyeungac/deep-knowledge-tracing-plus [39]
10https://github.com/UpstageAI/cl4kt [42]
11https://github.com/ApexEDM/GIKT [47]
12https://github.com/DMiC-Lab-HFUT/APGKT-PRICAI2022 [72]
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Table 4. Parameter Setting of FDKT

Parameter Fuzzy score sets Fuzzy cognition sets Epoch
Value 6 6 100

Parameter Optimizer Weight decay Learning rate
Value Adam 0.001 0.02

Table 5. Comparison of Prediction Performance in Continuous Score Scenarios4

Datasets Metrics FDKT (Ours) DKT [21] DKVMN [24] DeepIRT [25] SAKT [34] KQN [27]

Algebra05
MAE 0.1700 0.1882 0.2111 0.2122 0.1995 0.1920
RMSE 0.2130 0.2473 0.3002 0.2889 0.2516 0.2622

Algebra06
MAE 0.1590 0.1646 0.1989 0.1954 0.2040 0.1928
RMSE 0.2075 0.2162 0.2703 0.2600 0.2564 0.2555

Bridge06
MAE 0.1450 0.1621 0.2062 0.2064 0.2065 0.1921
RMSE 0.1850 0.2060 0.2672 0.2641 0.2581 0.251

ASSISTments
MAE 0.1874 0.2508 0.2002 0.1593 0.0832 0.1644
RMSE 0.2588 0.3238 0.3102 0.3459 0.2877 0.2679

Datasets Metrics AKT [35] CKT [36] DMN [38] ADMN [38] IADMN [38] DKT+ [39]

Algebra05
MAE 0.2110 0.1932 0.1997 0.1992 0.1984 0.2048
RMSE 0.2856 0.2575 0.2670 0.2661 0.2642 0.2784

Algebra06
MAE 0.1950 0.1892 0.1944 0.1933 0.1933 0.1923
RMSE 0.2554 0.2519 0.2577 0.2555 0.2532 0.2534

Bridge06
MAE 0.1900 0.1951 0.2062 0.2020 0.2017 0.1556
RMSE 0.2492 0.2491 0.2603 0.2557 0.2575 0.1878

ASSISTments
MAE 0.1920 0.1669 0.1613 0.1608 0.1602 0.1624
RMSE 0.3023 0.2679 0.2656 0.2668 0.2662 0.2721

Datasets Metrics CL4KT [42] GIKT [47] APGKT [72]

Algebra05
MAE 0.1732 0.1849 0.1842
RMSE 0.2182 0.2250 0.2297

Algebra06
MAE 0.1592 0.1593 0.1602
RMSE 0.1995 0.2077 0.2089

Bridge06
MAE 0.1483 0.1476 0.1513
RMSE 0.1851 0.1905 0.1895

ASSISTments
MAE 0.1975 0.2061 0.1906
RMSE 0.2842 0.2848 0.2850

4The bold and underlined results refer to the first and second best values, respectively.

6.2 Comparison of Prediction Performance

This subsection describes the performance of FDKT in continuous score scenarios, as compared
with the baselines (question 1). To ensure fairness, the parameters, epochs, optimizer, weight
decay, and learning rate of the models to be compared were set to be the same as those in FDKT.
Smaller values of RMSE and MAE indicate better performance.
Table 5 presents the MAE and RMSE results of the prediction performance, when FDKT was

compared with the deep-learning-based KT models. The prediction performance of FDKT out-
performs those of both DKT and the other compared models in most cases in continuous score
scenarios. This is attributed to the mechanisms such as fuzzy processing and fuzzy rules in FDKT
that effectively adapt to continuous scenarios.
The Nemenyi test [73] was conducted to present a comprehensive comparison between FDKT

and the baselines. The results were statistically compared over multiple datasets, as shown in
Figure 8. Lower ranks indicate better performance. There is no significant difference in the same
crossline-connected models. FDKT was found to perform better in continuous score scenarios.
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Fig. 8. Nemenyi test of the prediction performance in continuous score scenarios.

6.3 Illustration of Interpretability

This subsection shows the case studies to demonstrate how FDKT can do interpretation, including
intrinsic and post hoc interpretability.

6.3.1 Case Study of Intrinsic Interpretability. As shown in Figure 9, to illustrate the working
process of FDKT in a visually intuitive manner, we have selected three records of a student from
the Algebra05 dataset, where a student has provided consecutive responses to a particular skill
(No. 224). We will demonstrate how FDKT predicts the outcome for the third record. According
to Table 4, in the experiment, we set the number of fuzzy score sets and fuzzy cognition sets
to 6. Firstly, after the fuzzification module of FDKT, we obtained fuzzy scores and the last fuzzy
cognition with a continuous score of 0.8. We can observe that the student’s last fuzzy cognition
has a higher probability (0.45) of belonging to the 4-bin, while the current fuzzy score has a higher
probability (0.36) of belonging to the 5-bin. Based on the inference of fuzzy rules, we obtained
the current fuzzy cognition. At this point, the student’s fuzzy cognition for skill 224 has a higher
probability (0.44) of belonging to the 5-bin. This indicates an improvement compared to the last
fuzzy cognition. As a result, FDKT predicts a score of 0.86 for the student’s performance on the skill-
related exercises in the next time step. This predicted score represents an improvement compared
to the score of 0.8. Furthermore, when comparing FDKT’s predicted scores with the ground truth,
we find that the predicted score trend (continuously increasing) aligns consistently with the actual
scores. The above case study demonstrates the intrinsic interpretability of FDKT, that is, FDKT
provides explanations for its corresponding prediction results.

6.3.2 Results of Post Hoc Interpretability. This subsection demonstrates the post hoc inter-
pretability of FDKT (question 2), that is, to answer what else FDKT tells us (shown in Figure 2(b)).

According to the domain knowledge (the basic unit of interpretability [15]) in education data
mining, better performance on exercises thanks to better knowledge mastery of students. Student
cognition and prediction performance are the cause and effect for the KT task, respectively. In this
subsection, the interpretability of FDKT is visualized from the following two aspects: (1) From the
effect (performance) to cause (fuzzy cognition), and (2) From the cause (fuzzy cognition) to effect
(performance).

From Performance to Cognition. The relation from the prediction scores to the fuzzy cog-
nition is analyzed in this part. The fuzzy cognition includes its feature values and feature effects.
The feature effects [64, 74] were obtained by multiplying the feature values with the weights in
the optimized FDKT.
The feature value and effect distributions of the students with higher and lower prediction scores

in Algebra05 are shown in Figure 10, where the weight in the optimized FDKT is 0.23, 0.50, 0.81,
0.60, 0.96, 1.38. Higher and lower scores denote normalized prediction scores higher than 0.8 and
lower than 0.2, respectively. The fuzzy cognition from the 1 to 6 level denotes cognition from low
to high. Comparing the fuzzy cognition of students between the higher (Figure 10(a-b)) and lower
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Fig. 9. Case study to demonstrate how FDKT can do intrinsic interpretation on Algebra05.

Fig. 10. Feature value and effect distributions of the students with higher (a-b) and lower (c-d) prediction

scores in Algebra05. The fuzzy cognition sets from 1 to 6 denote the cognition from low to high. The better

fuzzy cognition achieves high feature values and effects in (a-b), while those in (c-d) are on the contrary. This

demonstrates that students with high prediction scores have high fuzzy cognition, which is in line with our

initial understanding.

Fig. 11. Distributions of the target and prediction scores of Algebra05 for students with higher (a) and lower

(b) cognition. The scores in (a) were statistically higher than those in (b). Both cases show excellent predic-

tion performance. This demonstrates that the good prediction of FDKT is attributed to the good cognition

estimate from the cause to effect.

prediction scores (Figure 10(c-d)), better fuzzy cognition achieves high feature values and effects
in the former, while those in the latter are on the contrary. This demonstrates that students with
high prediction scores have high fuzzy cognition, which is line with our common knowledge.
From Cognition to Performance. The relation from the fuzzy cognition to the prediction

scores is analyzed as follows. The distributions of the target and prediction scores of Algebra05
for students with higher and lower cognition levels are shown in Figure 11. The probability that
students belong to the top (4-6 levels) and bottom (1-3 levels) of the three fuzzy cognition sets are
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Table 6. Comparison of Prediction Performance in Continuous Score Scenarios between

Different Numbers of Fuzzy Sets6

Datasets Metrics Case A (2, 2) Case B (2, 6) Case C (6, 2) Case D (6, 6)

Algebra05
MAE 0.1770 0.1768 0.1777 0.1700

RMSE 0.2320 0.2300 0.2301 0.2130

Algebra06
MAE 0.1612 0.1610 0.1612 0.1590

RMSE 0.2090 0.2090 0.2088 0.2075

Bridge06
MAE 0.1662 0.1474 0.1489 0.1450

RMSE 0.2188 0.2004 0.2014 0.1850

ASSISTments
MAE 0.1944 0.1864 0.1936 0.1874
RMSE 0.2710 0.2602 0.2596 0.2588

6(i, j) indicate that the numbers of fuzzy cognition and fuzzy score sets are i and j , respectively.

denoted as ptop and pbottom , respectively. Higher and lower cognition denote the cognition that
ptop > pbottom and ptop < pbottom , respectively. |ptop − pbottom | > α(α = 0.2) because cognition
with a small probability difference cannot be arbitrarily defined.

Figure 11 is analyzed from the following two aspects. (1) Comparing two target distributions
between the higher and lower cognition, the target scores of students with higher cognition are
statistically higher than those with lower cognition, according to the student cognition obtained
from the proposedmodel. This is consistent with our domain knowledge that students with greater
cognitive ability can achieve higher grades. It also shows the evaluation of student cognition is rea-
sonable in the proposed model. (2) Comparing the target and prediction for the same level of cogni-
tion, they show a relatively consistent distribution, in which the red transverse lines represent the
median values. Themedian values of the target and prediction data, for higher and lower-cognition
students, are around 0.8 and 0.4, respectively. This demonstrates the good prediction performance
of FDKT is attributed to good cognition estimation from cause to effect.

6.4 Parameter Analysis

In this subsection, an analysis of the two hyper parameters, that is, the numbers of fuzzy cognition
sets I and fuzzy score sets J , is presented as follows. As shown in Table 6, the results demonstrate
that the FDKT performs best when both I and J are set to six. This illustrates the applicability of
the FDKT to continuous scenarios because it is equivalent to considering that the input scores are
only two sets (similar to the discrete scenario) when I is set to 2. For example, for the RMSE results
of FDKT on the ASSISTments dataset, the best results were obtained in Case D (the number of
both fuzzy sets is set to 6), with a 4.71% improvement over the results in Case A (the number of
both fuzzy sets is set to 2).
The specific analysis is as follows. Defining a greater number of fuzzy sets (within a reasonable

range) can effectively improve the accuracy of the FDKT in continuous scenarios and can be at-
tributed to the following: (1) According to the definition of fuzzy rules in the FDKT (Section 4.2.2),
the greater the number of fuzzy sets, the greater the number of fuzzy rules. (2) According to the
fuzzy reasoning module in the FDKT framework (Figure 5(c)), the number of fuzzy rules is equal
to that of hidden units in the FDKT fuzzy rule layer, which directly affects the network structure.
(3) According to fuzzy theory, the higher the number of fuzzy rules, the more expert knowledge the
model can incorporate [75]; moreover, according to the experience of neural networks, the higher
the number of hidden units, the higher the number of network parameters and the stronger the
representation capability of the model [76]. Therefore, one of the main reasons for the excellent
performance of FDKT in continuous scenarios stems from the larger number of fuzzy sets.
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In discrete scenarios, only two definite categories for the exercise scores exist (i.e., correct or
incorrect answers, denoted by 1 and 0, respectively). That is, the score of a student on an exercise
can be categorized under only two score sets (i.e., correct or incorrect set). Thus, the number of two
fuzzy sets (i.e., fuzzy score sets and fuzzy cognitive sets) in FDKT is set to two tomake the proposed
FDKT more adaptable to discrete scenarios. Thus, the number of fuzzy rules in discrete scenarios
is 2 ∗ 2 = 4 (according to Section 4.2.2), which is significantly smaller than that in continuous
scenarios. Therefore, the FDKT has a smaller number of fuzzy rules in the discrete scenarios, which
limits its accuracy according to the above analysis.

6.5 Discussion

The experiments answered the main questions in the experiments, which are summarized as fol-
lows: (1) From the prediction performance perspective, the proposed model outperforms the com-
pared models in most cases, both on two regression metrics RMSE and MAE, in the continuous-
score scenarios. (2) From the model interpretability perspective, the proposed model illustrates the
post hoc interpretability both from cause to effect and effect to cause, respectively.
The reasons for the better performance of FDKT in continuous scenarios are analyzed as follows.

(1) FDKT uses backpropagation to update the network parameters for improving the prediction
performance by designing a reasonable loss function, similar to most neural network-based KT
models. The direction of gradient descent guides the parameters to be updated in a better direc-
tion. (2) The process of updating the gradient-guided parameters is combined with domain-related
expert experience through fuzzy rules for equalizing its prediction results with domain knowledge.
In FDKT, educational expertise is combined in neural networks through fuzzy rules (detailed in
Section 4.3). Andwe also demonstrated the consistency in the prediction results with expert knowl-
edge through visualization (detailed in Section 6.3).

Compared with the existing neural-network-based KT model, the advantages of the proposed
FDKT with an FNN are analyzed as follows. (1) FDKT improves the interpretability of the tradi-
tional neural-network-based KT model, both in intrinsic and post-hoc aspects. As for the intrinsic
interpretability of the FDKT (detailed in Section 5), we designed a set of fuzzy rules regarding the
fuzzy cognitive states and fuzzy performance scores, relying on prior knowledge. The post hoc
interpretability of FDKT is illustrated through the experimental results (detailed in Section 6.3).
(2) FDKT combines the advantages of both fuzzy theory and neural networks, i.e., the ability to
combine language-based knowledge (e.g., expert experience) and the ease of training the model
parameters (e.g., backpropagation). The FDKT combines neural networks and fuzzy theory, which
solves the limitation that neural networks cannot receive linguistic knowledge, since fuzzy sets
and rules are powerful tools for dealing with this type of linguistic data. (3) FDKT could address
the uncertainty in the KT task, reflected in the following three aspects. (a) Performance of students
on exercises is uncertain. For example, if a student scores 0.55, evaluating the score as high or low
is not possible. (b) A student’s knowledge of the knowledge component is uncertain. (c) Reason-
ing about the current time step cognition based on the performance of a student in an exercise
and the previous time step cognition is uncertain. (4) FDKT extends the application scenarios of
most neural network-based KT to make them suitable for continuous scenarios. Most existing KT
models cannot directly handle continuous scoring scenarios. They must be fed into the network
by binarizing the continuous scores and then encoding them as 0 or 1. Instead, FDKT extends
KT to continuous scoring scenarios by representing continuous inputs as fuzzy sets after a fuzzy
affiliation function.
Moreover, in other fields, the approaches for designing FNNs are as follows: Combining fuzzy

systems with neural networks or deep learning in uncertain application scenarios is a powerful
solution. We consider that this might include the following two approaches. (1) Converting the
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weights or inputs of neural networks into fuzzy sets. (2) Designing expert knowledge into fuzzy
rules to be added between the input and output of the neural network.

7 CONCLUSION

Most deep learning-based KT models are less interpretable because of the difficulty in explain-
ing the achievement of accurate predictions. To address this problem, a fuzzy knowledge trac-
ing (FDKT) model is proposed with a fuzzy reasoning module that estimates student cognition of
the knowledge components. The intrinsic and post-hoc interpretability of FDKT is demonstrated
through rules, hidden semantics, and visualization experiments. In addition, FDKT performs bet-
ter than the deep-learning-based KT models on continuous scores, broadening the application of
KT. It should be pointed out that in discrete scenarios, students’ practice scores have only two
definite categories (i.e., correct or wrong answers), resulting in a much smaller number of fuzzy
rules and hidden units than in continuous scenarios (see Section 6.4 for details). This limits the
performance of the FDKT model in discrete scenarios. In the future, the authors plan to design
reasonable mechanisms to further improve applicability of FDKT to discrete scenarios.
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